ИССЛЕДОВАНИЯ СВЕТОИЗЛУЧАЮЩИХ ГЕТЕРОСТРУКТУР
С КВАНТОВЫМИ ЯМАМИ, ОРИЕНТИРОВАННЫМИ В ПОЛЯРНЫХ
И НЕПОЛЯРНЫХ НАПРАВЛЕНИЯХ

Специальность: 01.04.10 – Физика полупроводников

ДИССЕРТАЦИЯ
на соискание ученой степени
кандидата физико-математических наук

Научный руководитель:
dоктор физ.-мат. наук, доцент
Зубков Василий Иванович

Санкт-Петербург – 2014
Оглавление

Введение ... 5

1. Полупроводниковые твердые растворы $A_{III}N$, их основные свойства. Методы расчета встроенных полей и энергетических диаграмм ... 15

1.1 Основные свойства соединений $A_{III}N$ и полупроводниковых твердых растворов на их основе ... 15

1.1.1 Актуальность полупроводниковых нитридов для современной фотоники 15

1.1.2 Особенности технологии твердых растворов на основе III-нитридов 17

1.1.3 Спонтанно-поляризованное состояние в III-V нитридах 18

1.2 Проблема встроенных электрических полей в соединениях $A_{III}N$ 21

1.2.1 Методы расчета поляризационных свойств в GaN и InN 21

1.2.2 Пьезоэлектрические и пироэлектрические эффекты в наноструктурах на основе $A_{III}N$... 24

1.2.3 Зависимость степени поляризованности слоев от кристаллографического направления роста ... 28

1.3 Методы расчета электронной структуры МКЯ .. 32

1.3.1 Основные применяемые уравнения ... 32

1.3.2 Дискретизация параметров и методы решения 35

1.3.3 Раздельное решение (метод Гуммеля) ... 36

1.3.4 Совместное решение (метод Ньютона) ... 37

Выводы по главе 1 ... 38

2. Экспериментальные методы. Аппаратная реализация методов спектроскопии адmittанса .. 40

2.1. Методы спектроскопии адмитанса ... 40

2.1.1 Емкость полупроводниковой структуры ... 44
2.1.2 Квазистатические методы адмиттанса ... 45
2.1.3 Динамические методы адмиттанса ... 47
2.2. Модернизированный аппаратно-программный комплекс 49
 2.2.1 Особенности аппаратной составляющей комплекса .. 49
 2.2.2 Программное обеспечение автоматизированного измерительного комплекса адмиттанса ... 53
2.3. Референтная система измерений на базе мостового емкостного измерителя МЦЕ-13АМ ... 55
Vыводы по главе 2 .. 58
3. Расчет электронного спектра и вероятностей переходов в квантовых ямах InGaN/GaN с учетом поляризованного состояния слоев .. 59
 3.1 Расчет параметров поляризованного состояния в квантовых ямах InGaN/GaN .. 59
 3.1.1 Механический и пьезоэлектрический отклик напряженных нитридных слоев .. 60
 3.1.2 Упругость в анизотропных рассогласованных слоях III-нитридов 62
 3.2 Реализация алгоритма расчета электронного спектра гетероструктур с МКЯ .. 65
 3.2.1 Численное решение уравнения Шредингера .. 68
 3.2.2 Численное решение уравнения Пуассона .. 69
 3.2.3 Моделирование распределения потенциала и вольт-фарадных характеристик гетероструктур с поляризованными КЯ .. 71
 3.3 Результаты расчета электронного спектра и вероятностей электронно-дырочных переходов в различно ориентированных КЯ InGaN/GaN 72
 3.3.1 Напряженность электрического поля, обусловленного поляризацией слоев гетероструктур InGaN/GaN .. 72
3.3.2 Самосогласованный потенциал в гетероструктуре с КЯ InGaN/GaN с учетом поляризации слоев .. 75
3.3.3 Интеграл перекрытия волновых функций электронов и дырок в гетероструктурах с КЯ InGaN/GaN .. 77
Выводы по главе 3 .. 80
4. Исследования гетероструктур с квантовыми ямами InGaAs/GaAs и InGaN/GaN методами вольт-фарадного профилирования. Сопоставление экспериментальных результатов и численного расчета .. 82
4.1. Исследуемые образцы с МКЯ InGaAs/GaAs .. 83
4.2 Вольт-фарадное профилирование структур с МКЯ InGaAs/GaAs в диапазоне температур 10…300 К ... 84
4.3 Эффект электростатического взаимодействия накопленных в КЯ зарядов, в гетероструктурах InGaAs/GaAs и InGaN/GaN ... 87
4.4. Исследование уровней размерного квантования в МКЯ InGaAs/GaAs методами вольт-фарадного профилирования.. 95
4.5 Вольт-фарадные исследования гетероструктур InGaN/GaN. Асимметрия наблюдаемых концентрационных профилей основных носителей заряда, порождаемая поляризацией ... 104
 4.5.1 Вольт-фарадная характеристика двойных гетероструктур GaN/InGaN/GaN ... 104
 4.5.2 Моделирование вольт-фарадных характеристик гетероструктур с КЯ InGaN/GaN .. 110
Выводы по главе 4: ... 117
Заключение ... 119
Список условных обозначений ... 122
Список литературы ... 124
Введение

Актуальность

Полупроводниковые структуры, в состав активной области которых входят квантово-размерные объекты, такие как квантовые ямы (КЯ), проволоки и точки, составляют основу современной наноэлектроники и фотоники. Светоизлучающие твердотельные структуры широко используются в различных областях человеческой деятельности для освещения, передачи информации, в биологических и медицинских целях и т.д. Самым масштабным применением и, следовательно, перспективным рынком для светоизлучающих структур является освещение, а с открытием возможности создавать яркие источники света на основе твердых растворов нитридов буквально за одну декаду произошла революция в этой области.

Соединения AIIIIN обладают уникальной совокупностью свойств: имеют прямую зонную структуру во всем диапазоне составов, а изменение ширины запрещенной зоны с запасом перекрывает диапазона энергий видимого излучения [1]. Яркость структур на основе нитридов довольно высока, несмотря на вынужденно малую ширину квантовых ям (не более 3 нм) [2]. В настоящее время такие структуры, выращенные в направлении [0001] на гетероэпитаксиальных подложках лежат в основе промышленного производства светоизлучающих диодов (СИД) синего и белого свечения, сохраняя при этом большое количество нерешенных проблем по увеличению эффективности, а одной из главных задач является охвата всего энергетического спектра видимого излучения путем изменения состава активного излучающего слоя.

Квантовые ямы в структурах на основе III-нитридов, изготовленные в направлении [0001], обладают сильным встроенным электрическим полем [1] (и квантово-размерным эффектом Штарка [3]), которое препятствует эффективному перекрытию волновых функций электронов и дырок, значительно уменьшая квантовый выход прибора. Использование тонких КЯ InGaN/GaN увеличивает степень перекрытия волновых функций, но снижает накопленный в КЯ заряд и
заставляет проводить сильное легирование барьеров, что ведет к увеличению вероятности безызлучательной Оже-рекомбинации.

Выращивание гетероструктур в полуполярных или неполярных направлениях полностью или частично убирает встроенное электрическое поле в КЯ [4], что, как показано в настоящей работе, дает потенциальную возможность существенно увеличить ширину ямы InGaN/GaN, при уменьшении уровня легирования в барьере, что, очевидно, будет сопровождаться сокращением вероятности Оже-рекомбинации.

Таким образом, являются актуальными экспериментальные исследования и моделирование параметров электронного спектра гетероструктур на основе \(\text{A}^{\text{III}} \text{-N} \), выращенных в различных кристаллографических направлениях, с целью более глубокого понимания физики происходящих в них процессов и оптимизации геометрии активной области светоизлучающих гетероструктур InGaN/GaN.

Большое количество КЯ в активной области, вследствие электростатического взаимодействия зарядов, оказывает влияние на эффективность светоизлучающих структур. В работе детально рассматривается данная проблема, и предлагаются рекомендации по оптимальному дизайну активной области с МКЯ для обеспечения их наиболее эффективного заполнения носителями заряда и повышения вероятности излучательной межзонной рекомбинации.

В сложившихся условиях быстрого развития технологии и, как следствие, перманентного создания новых структур актуальной является проблема их диагностики как на стадии разработки, так и в процессе контроля качества на различных этапах производства. Развиваемые в настоящей работе методы спектроскопии адmittанса являются одними из наиболее информативных и конкурентоспособных неразрушающих методов диагностики полупроводниковых наногетероструктур [5]. Требуя относительно несложной приборной базы, спектроскопия адmittанса представляет собой мощный исследовательский инструмент, позволяющий получать информацию о распределении свободных
носителей заряда по структуре, определять энергетические характеристики наблюдаемых центров захвата и эмиссии и судить об их природе.

Для расширения диагностических возможностей спектроскопии адмиттанса нами используется математическая обработка экспериментальных данных, численное моделирование энергетического спектра и распределения концентрации свободных носителей заряда в полупроводниковых гетероструктурах. Например, методом сопоставления наблюдаемого в эксперименте и моделируемого профиля носителей заряда определяется разрыв зон на гетерогранице. Расчет параметров энергетического спектра гетероструктур, таких как энергии связанных в КЯ состояний, соответствующие им волновые функции, энергии межзонных переходов и их вероятности, позволяет повысить информативность спектроскопии адмиттанса и использовать данный метод на стадии проектирования полупроводниковых устройств.

Таким образом, в настоящей работе решались задачи по развитию и адаптации методов спектроскопии адмиттанса, в частности вольт-фарарадных характеристистик в широком диапазоне температур, для исследования нитридных наногетероструктур с КЯ, ориентированных в полярных, полуполярных и неполярных направлениях.

Основными объектами исследования являлись гетероструктуры InGaN/GaN и InGaAs/GaAs с одиночными и множественными квантовыми ямами разной толщины и разного состава твердых растворов, а также полупроводниковые двойные гетероструктуры InGaN/GaN.

Основная цель диссертационной работы – систематические вольт-фарарадные исследования в широком диапазоне температур, моделирование и численный расчет спектра электронов и дырок гетероструктур с одиночными и множественными квантовыми ямами InGaN/GaN и InGaAs/GaAs и выработка на этой основе научного подхода к построению эффективного дизайна активной области светоизлучающих наногетероструктур.
Для достижения поставленной цели в диссертации решались следующие задачи:

– модернизация аппаратно-программного комплекса измерений адmittанса на базе криогенной зондовой станции;

– создание программного обеспечения для расчета зонной структуры, реального и наблюдаемого концентрационных профилей носителей заряда в системах с МКЯ с учетом электрических полей, обусловленных поляризованным состоянием КЯ и барьеров, в условиях приложенного смещения и в широком интервале температур;

– моделирование энергетических диаграмм электронной и дырочной подсистем структур с КЯ на основе In$_x$Ga$_{1-x}$N/GaN различного состава и ширин и с учетом эффектов поляризации;

– определение влияния параметров (кристаллографическое направление роста слоев, ширина ямы, состав) гетероструктур с КЯ InGaN/GaN на вероятности межзонных переходов;

– расчет составляющих векторов спонтанной и пьезоэлектрической поляризаций в МКЯ In$_x$Ga$_{1-x}$N/GaN при различной кристаллографической ориентации слоев активной области, их ширины и состава;

– анализ концентрационных профилей носителей заряда, полученных в широком диапазоне температур из вольт-фарадных характеристик структур с КЯ InGaAs/GaAs;

– определение влияния температуры и параметров структуры – ширины барьеров и концентрации легирующей примеси – на величину накапливаемого заряда в легированных структурах с МКЯ по результатам эксперимента и моделирования;

– анализ поведения уровней размерного квантования в структуре с КЯ InGaAs/GaAs при изменении температуры и частоты, анализ результатов вольт-фарадных измерений в условиях отклонения от режима квазистатики;
– изучение особенностей вольт-фарадного профилирования структур с КЯ InGaN/GaN, ориентированных в полярном и полуполярном направлениях.

Научная новизна диссертационной работы заключается в том, что методами адмиттансной спектроскопии в диапазоне температур от комнатных до криогенных изучены особенности поведения наблюдаемых в эксперименте профилей распределения концентрации носителей заряда в структурах с квантовыми ямами, связанные с наличием встроенных в гетероструктуру поляризационных полей.

Экспериментально обнаружено, подтверждено численным расчетом и объяснено уменьшение накопленного заряда в центральных квантовых ямах структур с множественными квантовыми ямами. Выявлена степень влияния основных параметров – концентрация примеси, ширина барьера и температура – на проявление наблюдаемого эффекта. Эксперименты и моделирование проведены в диапазоне температур 10…300 К.

Предложен корректный анализ результатов вольт-фарадных измерений гетероструктур с квантовыми ямами в условиях отклонения эксперимента от режима квазистатики при заглублении уровней размерного квантования с понижением температуры. Интерпретация основана на сопоставлении времени эмиссии носителей заряда с полуperiодом вынуждающего сигнала.

При помощи вольт-фарадного профилирования и моделирования параметров полупроводниковой структуры прослежена модификация уровня размерного квантования КЯ InGaAs/GaAs с изменением температуры.

Результаты расчета электрических полей, вызванных эффектом поляризации, применены к моделированию энергетического спектра и вольт-фарадных характеристик легированных наногетероструктур с различной кристаллографической ориентацией, содержащих одиночные и множественные КЯ InGaN/GaN. Расчет осуществлен на основе самосогласованного решения уравнений Пуассона и Шредингера в условиях приложенного к структуре смещения.
Обнаружены и проанализированы особенности вольт-фарадного профилирования структур с КЯ InGaN/GaN в поляризованном состоянии при их ориентации в различных кристаллографических направлениях.

Практическая значимость заключается в следующем:

Модернизирован исследовательский автоматизированный комплекс для измерений спектров адmittанса полупроводниковых наноструктур на базе LCR-метра Agilent E4980A, контроллера температуры LakeShore 336 и гелиевого криостата замкнутого цикла Janis CCR-10-2-(2CXKEL-4PORTS). Комплекс позволяет проводить адmittансные исследования в диапазоне температур 15…475 К, напряжений смещения ±40 В и частот тестового сигнала 20 Гц…2 МГц.

Разработано программное обеспечение для расчета электрических полей, возникающих в результате спонтанной и пьезо-поляризации, в многослойных гетероструктурах InGaN/GaN в зависимости от состава, кристаллографического направления и толщины слоев.

Представлен детальный анализ результатов вольт-фарадных измерений гетероструктур с квантовыми ямами InGaAs/GaAs в условиях отклонения эксперимента от режима квазистатики при пониженных температурах. Объяснены особенности поведения наблюдаемого концентрационного профиля носителей заряда в гетероструктуре с КЯ как следствие модификации положения уровней размерного квантирования от температуры и запаздывания их перезарядки по отношению к периоду вынуждающего сигнала.

Показано, что центральные квантовые ямы в системе МКЯ накапливают меньший заряд вследствие их экранирования крайними КЯ. Выработаны практические рекомендации по оптимизации взаимного расположения квантовых ям в активной области светоизлучающей гетероструктуры с учетом ширины барьеров и степени их легирования.

Показано, что использование гетероструктур с квантовыми ямами InGaN/GaN, ориентированными в полуполярных и неполярных кристаллографических направлениях, полностью или частично убирает встроенное электрическое
поле в КЯ и дает потенциальную возможность значительно увеличить ширину ямы InGaN/GaN при уменьшении уровня легирования в барьере, увеличении заряда КЯ и сокращении вероятности Оже-рекомбинации.

Изучены особенности вольт-фарадного профилирования структур с КЯ InGaN/GaN, ориентированных в полярном и полуполярном направлениях. Показаны отличия от профилирования КЯ без встроенных полей и приведена корректная интерпретация наблюдаемых концентрационных профилей носителей заряда. Показана возможность определять величину встроенных в гетероструктуру полей непосредственно из экспериментальных вольт-фарадных характеристик.

Научные положения, выносимые на защиту:

1. Ориентирование квантовых ям InGaN/GaN вдоль неполярных и полуполярных направлений полностью или частично снимает ограничения по ширине квантовой ямы, накладываемые поляризацией. Это позволяет существенно снизить концентрацию примеси в барьерах и уменьшить темп Оже-рекомбинации; в частности, ориентирование вдоль полуполярного направления [1122] в системе In_{0.15}Ga_{0.85}N/GaN дает возможность увеличить ширину КЯ с 2.5 до 6.5 нм с сохранением вероятности основного межзонного перехода на уровне Р = 0.55.

2. В гетероструктурах с МКЯ имеет место уменьшение заряда в центральных квантовых ямах по сравнению с крайними вследствие электростатического взаимодействия зарядов квантовых ям. Эффект усиливается с уменьшением ширины барьеров и концентрации носителей заряда в них, что необходимо учитывать при проектировании активной области светоизлучающих структур с МКЯ InGaN/GaN.

3. В вольт-фарадных характеристиках гетероструктур с квантовыми ямами, когда время эмиссии электронов с уровня размерного квантования не является пренебрежимо малой величиной по сравнению с полупериодом вынуждающего сигнала, наблюдается отход от квазистатичности измерений, что влечет снижение доли эмиттируемых из квантовой ямы носителей заряда и возникновение зависимости ширины области объемного заряда от частоты. Следствием является
сдвиг наблюдаемого положения пика КЯ на концентрационном профиле и его зависимость от частоты тестового сигнала.

4. Профиль концентрации носителей зарядов, полученный методом вольт-фарадных характеристик в структуре с КЯ InGaN/GaN, находящейся в поляризованном состоянии, зависит от направления вектора поляризации и не оказывается зеркально-симметричным при инверсии направления этого вектора.

Результаты работы использованы при выполнении:

Апробация работы

Основные результаты диссертационной работы докладывались и обсуждались на следующих конференциях и школах:

- Зубков, В.И. Разработки ресурсного центра СПбГЭТУ для диагностики промышленных гетероструктур для синих, белых и зеленых светодиодов [Текст] / В.И. Зубков, О.В. Кучерова, А.В. Соломонов, И.Н. Яковлев // 8-я Всероссийская конференция «Нитриды галлия, индия и алюминия:

Публикации. По теме диссертации опубликовано 2 статьи из списка ВАК, одна статья принята в печать, опубликованы материалы трудов 7 международных и российских научных конференций. Основные положения защищены 1 патентом на способ измерения и 2 свидетельствами о регистрации программ на ЭВМ.
Структура и объем диссертации

Диссертация состоит из введения, 4 глав, заключения и списка используемой литературы, включающего 89 наименований. Общий объем работы составляет 132 страницы машинописного текста. Работа содержит 41 рисунок и 7 таблиц.
1. Полупроводниковые твердые растворы $\text{A}^{\text{III}}\text{N}$, их основные свойства. Методы расчета встроенных полей и энергетических диаграмм

1.1 Основные свойства соединений $\text{A}^{\text{III}}\text{N}$ и полупроводниковых твердых растворов на их основе

1.1.1 Актуальность полупроводниковых нитридов для современной фотоники

Синие, белые (с использованием люминофора) и зеленые светодиоды на основе нитридов сегодня широко используются в освещении, полноцветных дисплеях, светофорах и т.д. Нитридные лазерные диоды также являются неотъемлемыми компонентами DVD-плееров высокого разрешения. Многообещающими областями применения являются печать, сенсоры, связь и медицинское оборудование. Однако, несмотря на впечатляющие достижения исследователей, существует острая необходимость более глубокого понимания физических процессов, происходящих в устройствах на основе нитридов. Применение комплексных экспериментальных исследований современными диагностическими методами и численное моделирование может помочь в изучении этих процессов и дать количественное соответствие между свойствами материала и характеристиками устройства.
1.1.2 Особенности технологии твердых растворов на основе III-нитридов

Выдающиеся характеристики приборов, получаемых на основе нитридов, равно как и сложности в их изучении и изготовлении, обусловлены их уникальными кристаллическими свойствами. В зависимости от состава раствора In\textsubscript{x}Ga\textsubscript{1-x}N ширина запрещенной зоны варьируется от 0.7 эВ до 3.5 эВ, покрывая с запасом весь энергетический диапазон видимого излучения.

В то время как такие распространенные полупроводниковые соединения как GaAs и InP выращиваются в кристаллической системе цинковой обманки, нитридные кристаллы для приборных применений растут в гексагональной кристаллической системе (рисунок 1.1).

Рисунок 1.1 – Кристалл вюрцита с постоянными решетки \(a \) и \(c \). Структура формируется из двух связанных гексагональных подрешеток атомов Ga и N.

Гексагональная кристаллическая структура определяет наличие встроенных электрических полей, обусловленных спонтанной и пьезоэлектрической поляризацией. В качестве подложек для роста эпитаксиального GaN обычно
используют сапфир или карбид кремния. Постоянные решеток этих материалов составляют 0.476 нм и 0.308 нм, соответственно, что сильно отличается от постоянной решетки GaN (\(a = 0.319\) нм); только с недавнего времени стали доступны объемные подложки GaN [1]. Сильное рассогласование постоянных кристаллической решетки подложки и эпилоя приводит к большому количеству дислокаций в нитридных структурах, причем плотность дислокаций более чем на 5 порядков превышает плотности в структурах на основе других полупроводниковых растворов. Заметим, однако, что наличие такого количества дефектов не оказывает решающего влияния на эффективность источников излучения на основе GaN. Причина этого до конца не изучена.

Другое уникальное, в негативном понимании, свойство нитридов – большая энергия активации основного акцептора Mg (~170 мэВ). Из-за этого требуется высокая плотность легирования – порядка \(10^{19} \text{см}^{-3}\) – для достижения концентрации свободных дырок на уровне \(10^{18} \text{см}^{-3}\). Большая концентрация примеси является причиной исключительно низких значений подвижности дырок – порядка \(10 \text{см}^2\cdot\text{В}^{-1}\cdot\text{с}^{-1}\). С другой стороны, высокое значение подвижности электронов в GaN (до 2000 \(\text{см}^2\cdot\text{В}^{-1}\cdot\text{с}^{-1}\)) и высокое пробивное поле (более 3 МВ/см) являются преимуществами для применения в высокочастотной электронике и силовых приборах. Теплопроводность GaN более чем в три раза выше, чем GaAs.

1.1.3 Спонтанно-поляризованное состояние в III-V нитридах

Среди III-V полупроводников нитриды являются единственными соединениями, которые обладают состоянием спонтанной поляризованности (spontaneous polarization), \(P_{SP}\) [1, 15], которая отсутствует в других широко используемых в оптоэлектронике полупроводниках, таких как GaAs и InP. Это свойство оказывается критическим для практического применения, так как снижает квантовую эффективность оптоэлектронных устройств на основе структур с квантовыми ямами. Таким образом, расчет и контроль \(P_{SP}\) становится неотъемлемой частью технологического развития электронных устройств,
например, лазеров, светоизлучающих диодов, транзисторов с высокой подвижностью электронов (High Electron Mobility Transistor).

В природе существует два типа материалов, обладающих свойством спонтанной поляризации: ферроэлектрики и пироэлектрики. В ферроэлектриках направление спонтанной поляризации может быть изменено приложением достаточно сильного внешнего электрического поля. Этот эффект, известный как гистерезис, важен в практическом применении и позволяет осуществлять точное измерение P_{SP}. В пироэлектриках, к которым относятся твердые растворы нитридов, спонтанная поляризация не может быть измерена таким способом, так как ее направление и ориентация не изменяются под действием внешних воздействий и всегда параллельны оси низкой симметрии кристалла, которая называется пироэлектрической осью кристалла. После того, как GaN приобрел важное значение для технологического применения, были приложены большие усилия для исследования явления спонтанной поляризации и сделан значительный шаг в теории твердого тела. Созданная теория носит название Modern Theory of Polarization (MTP) [16], иногда она отождествляется с фазовым методом Берри (Berry’s phase method). Теория давала возможность простого расчета P_{SP}, с достаточной точностью для первых исследований.

В кристаллах вюрцита пироэлектрическая ось параллельна направлению [0001], и вектор спонтанной поляризации ориентирован в этом же направлении. Постоянная поляризация в пироэлектриках является внутренним свойством, обусловленным природой химической связи, а именно, тем, что в твердом теле геометрические центры отрицательных зарядов (электронов) не совпадают с центрами положительных зарядов (ядер). Это означает, что в пироэлектриках атомные связи между соседними атомами не эквивалентны, и объясняет, почему в большинстве полупроводников отсутствует спонтанная поляризация. Тетраэдрические полупроводники с кубической структурой имеют четыре эквивалентные связи, характеризующиеся sp^3-гидризацией, о чем свидетельствует трехкратно вырожденный потолок валентной зоны в точке Г. В таком случае центр заряда электронов совпадает с положением его ядра. В
крystalлах с меньшим порядком симметрии, например, с гексагональной структурой, расщепление валентной зоны вблизи точки Г на одно- и двукратно вырожденные зоны показывает асимметрию в связях, с одной неуравновешенной связью из четырех. Эта связь ориентирована по направлению [0001], а ее степень ионности отличается от остальных. Такое отличие отражено в геометрической структуре кристалла. В большинстве таких кристаллов данная связь длиннее остальных. Центр электронных зарядов будет смещен в направлении [0001], т.е. вдоль пироэлектрической оси гексагональной решетки. Изложенное описание природы спонтанной поляризации показывает, почему в простых полупроводниках (Si, Ge, C) и в соединениях с кристаллической структурой цинковой обманки, как и в большинстве III-V и II-VI полупроводниковых соединений нет спонтанной поляризации.

Заметим, что эквивалентность четырех связей соседних атомов в полупроводниках с кубической решеткой может быть нарушена приложением механического напряжения к структуре, например, вдоль направления [111]. В этом случае связь вдоль направления [111] меняет свою длину, и нарушается идеальная симметрия sp^3-гибридизации. Результирующая поляризация называется пьезоэлектрической (P_{pZ}), так как индуцирована механическим воздействием. Важно отметить, что основное различие между спонтанной и пьезо- поляризациями заключается в природе эффекта: механическое напряжение в случае пьезоэлектрической поляризации и внутренняя асимметрия связи в кристалле в случае спонтанной поляризации. Таким образом, для определения P_{Sp} может быть применен один метод расчета, вне зависимости от наличия механического напряжения. Производная вектора поляризации по деформации представляет собой пьезоэлектрический коэффициент, приводимый в литературе.

P_{Sp} может увеличиваться в полупроводниках с кубической решеткой вместе с увеличением степени легирования. Например, в случае растворов InGaP, материал, сформированный замещением атомами In в подрешетке Ga кристалла GaP (цинковая обманка), претерпевает искажение связи, вносимое разностью
размеров атомов In и Ga, что влечет нарушение симметрии четырех связей тетragональной структуры. Результирующая поляризация является спонтанной, так как эффект наблюдается, когда твердый раствор находится в равновесном состоянии. Аналогичный эффект наблюдается и в III-нитридах.

Так как присутствие электрической поляризации напрямую связано с кристаллической симметрией, отметим, что нитридные полупроводники могут существовать в двух подрешетках – цинковой обманки и вюрцита. В обоих случаях каждый атом III-ей группы тетragонально расположен относительно четырех атомов азота. Основное отличие между этими двумя структурами – последовательность упаковки ближайших двухатомных плоскостей. Последовательность упаковки $ABABAB$ вдоль главной оси в вюрците [0001] и $ABCABC$ вдоль направлений [111] в цинковой обманке. Это отличие в последовательности упаковки выражается в различных пространственных группах симметрии: $P6_3mc$ для вюрцита и $F43m$ для цинковой обманки.

В отсутствии внешних электрических полей полная макроскопическая поляризация P твердого тела есть сумма спонтанной поляризации уравновешенной структуры P_{SP} и пьезоэлектрической поляризации P_{PZ}. Полупроводники на основе нитридов со структурой вюрцита имеют однополярную ось [0001]. Поэтому фаза вюрцита имеет чисто спонтанную электрическую поляризацию вдоль оси [0001] даже в равновесии, что отлично от строения полупроводников со структурой цинковой обманки.

1.2 Проблема встроенных электрических полей в соединениях $A^{III}N$

1.2.1 Методы расчета поляризационных свойств в GaN и InN

Начиная с 1997 г. большое количество работ посвящено эффектам поляризации в $A^{III}N$. Первый набор значений P_{SP}, опубликованный в 1997 г. [15] показал, что электрическое поле, возникающее в структуре со сверхрешеткой
AlN/GaN [17, 18], имеет не только пьезоэлектрическую, но и спонтанную природу. Значения были получены с помощью нового в то время приближения локальной плотности энергии обменного взаимодействия с использованием методики дискретного преобразования Фурье. Быстрое развитие компьютерной техники позволило уточнить данные. После понимания важности точных значений \(P_{SP} \) и \(P_{PZ} \), в 2001 году при помощи приближения GGA-DFT, предложенного авторами [19], были найдены более точные значения, которые определили некоторые свойства бинарных растворов на основе нитридов. В настоящей работе в основном использовались данные, приведенные в [1, 20, 21]. Величины структурных эlasticных свойств AlN, GaN и InN, найденные при помощи GGA-DFT приближений, приведены в таблице 1. Эти величины соответствуют бинарным растворам вюрцита для III-нитридов, в которых элементарная ячейка представляет гексагональную призму, описываемую длиной ребра основания \(a \), высотой призмы \(c \) и внутренним параметром \(u \), определяемым как длина связи анион-кATION вдоль направления [0001], выраженная в единицах \(c \) (см. рисунок 1.1). Структурные данные, рассчитанные при помощи приближения GGA-DFT, находятся в хорошем согласии с экспериментальными. В настоящей работе для расчетов используются данные, приведенные в таблицах 1 и 2, взятые, в основном из источников [1, 20].

В таблице 2 приведены данные величины поляризации для InN и GaN. Некоторые из них использованы при расчетах поляризации. Пьезоэлектрическое поле может быть рассчитано как функция приложенного механического напряжения \(\eta_j \):

\[
P_{PZ} = e_{33} \eta_3 + e_{31} (\eta_1 + \eta_2).
\]

(1.1)

Стоит обратить внимание, что во всех III-нитридах вектор спонтанной поляризации имеет отрицательное значение. В структуре вюрцита этот вектор параллелен оси \(c \), а отрицательный знак говорит о том, что вектор \(P_{SP} \) противонаправлен этой оси. Направление, принятое как положительное, направлено вдоль связи по оси \(c \) и соединяет атомы Ga с их первыми соседними
атомами азота по направлению от Ga к N. Можно сказать, что каждый атом Ga обладает электрическим диполем, антипараллельным направлению, соединяющему его с атомом N вдоль направления [0001].

Таблица 1

Значения структурных параметров \(a \) и \(c/a \) в равновесном состоянии, компоненты механической жесткости. Экспериментальные значения и рассчитанные данные (GGA) [1, p. 308]

<table>
<thead>
<tr>
<th></th>
<th>(a, \text{Å})</th>
<th>(c/a)</th>
<th>(C_{11}+C_{12}, \text{ГПа})</th>
<th>(C_{11}, \text{ГПа})</th>
<th>(C_{12}, \text{ГПа})</th>
<th>(C_{13}, \text{ГПа})</th>
<th>(C_{33}, \text{ГПа})</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaN</td>
<td>3.1968</td>
<td>1.6297</td>
<td>413</td>
<td></td>
<td>68</td>
<td>354</td>
<td>GGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1892</td>
<td>1.6258</td>
<td>520(^b)</td>
<td>110(^b)</td>
<td>390(^b)</td>
<td>Exp(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.188</td>
<td></td>
<td>375</td>
<td>140</td>
<td>115</td>
<td>385</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>InN</td>
<td>3.5805</td>
<td>1.6180</td>
<td>266</td>
<td></td>
<td>70</td>
<td>205</td>
<td>GGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.538</td>
<td>1.6119</td>
<td>294(^c)</td>
<td>121(^c)</td>
<td>182(^c)</td>
<td>Exp(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.540</td>
<td></td>
<td>225</td>
<td>110</td>
<td>95</td>
<td>200</td>
<td>[1]</td>
<td></td>
</tr>
</tbody>
</table>

Пьезоэлектрические коэффициенты и значение модуля вектора спонтанной поляризации в направлении [0001] для твердых растворов GaN и InN, кристаллизованных в структуре вюрцит

<table>
<thead>
<tr>
<th>(P_{SP}, \text{С м}^{-2})</th>
<th>(e_{33}, \text{С м}^{-2})</th>
<th>(e_{31}, \text{С м}^{-2})</th>
<th>(e_{31}^p, \text{С м}^{-2})</th>
<th>(e_{15}, \text{С м}^{-2})</th>
<th>Источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaN</td>
<td>-0.0339</td>
<td>0.667</td>
<td>-0.338</td>
<td>-0.372</td>
<td>-0.167</td>
</tr>
<tr>
<td></td>
<td>-0.029</td>
<td>0.65</td>
<td>-0.33</td>
<td>-0.33</td>
<td>[1]</td>
</tr>
<tr>
<td>InN</td>
<td>-0.0413</td>
<td>0.815</td>
<td>-0.412</td>
<td>-0.454</td>
<td>-0.112</td>
</tr>
<tr>
<td></td>
<td>-0.032</td>
<td>0.43</td>
<td>-0.022</td>
<td>-0.022</td>
<td>[1]</td>
</tr>
</tbody>
</table>
Из таблицы 2 видно, что P_{SP} в нитридах достигает заметных значений, хотя и меньших, чем пьезоэлектрические коэффициенты. Они в десять раз больше, чем в типичных III-V и II-IV растворах, поэтому поляризационное поле требует точного определения. В таблице 2 представлены два значения e_{31} — так называемое несобственное значение пьезоэлектрического коэффициента e_{31} — и собственное значение, обозначаемое как e_{31}^p. Существование двух значений константы e_{31} было открыто авторами [26], и их определение является нетривиальной задачей. Отметим, что использование несобственной константы e_{31} предполагается для расчета электрического поля в наноструктуре. Собственная константа e_{31}^p учитывается при расчете электрического тока с учетом поляризации. В данной работе рассчитывается напряженность электрического поля с поляризационной природой, поэтому будет использоваться несобственная пьезоэлектрическая константа.

1.2.2 Пьезоэлектрические и пироэлектрические эффекты в наноструктурах на основе $A^\text{III}N$

Связь между поляризованным состоянием полупроводника и индуцируемым этим состоянием электрическим полем в наноструктурах нетривиальна. Например, поляризованное состояние материала не обязательно приводит к наличию электрического поля, например, в массивном гомогенном образце поле возникать не будет, несмотря на присутствие вектора спонтанной поляризации. Электрическое поле в твердом теле возникает вследствие накопления заряда в локальных областях, где имеют место несоответствия кристаллической структуры, вызывающие нежкваливентность связей соседних атомов и смещение центров положительного и отрицательного зарядов атомов. Типичной неоднородностью структуры является интерфейс между двумя различными пироэлектрическими материалами, например квантовая яма InGaN/GaN. В соответствии с законами электростатики электрическая индукция D связана с плотностью заряда σ соотношением
Плотность заряда, индуцирующего состояние поляризации σ_{pol} и локализованного на интерфейсах двух материалов, находящихся в поляризованном состоянии, пропорциональна дивергенции вектора поляризации и определяется следующей формулой:

$$\text{div} \mathbf{P}^T = \text{div} (\mathbf{P}_{SP} + \mathbf{P}_{PZ}) = -\sigma_{pol},$$

где \mathbf{P}^T – так называемый вектор поперечной поляризации, то есть сумма векторов спонтанной и пьезоэлектрической поляризаций. Отметим, что гомогенное механическое напряжение не индуцирует разрыв периодичности в кристалле, оно меняет только структурные параметры; таким образом, наличие пьезоэлектрической поляризации не гарантирует существования электрического поля. Уравнения (1.2) и (1.3) описывают связь между индукцией электрического поля и поляризацией в идеальном диэлектрике. Точное выражение индукции электрического поля в пироэлектрической наноструктуре имеет следующий вид:

$$\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E} + \mathbf{P}_{SP} + \mathbf{P}_{PZ},$$

Здесь и далее ε – статическая диэлектрическая проницаемость твердого тела. (Здесь мы не будем учитывать анизотропную природу диэлектрического отклика и используем скалярное обозначение для диэлектрической проницаемости. Кроме того, рассматриваются достаточно низкие частоты). \mathbf{D} – суммарный вектор индукции, складывающийся из вектора напряженности внешнего поля, приложенного к образцу, $\mathbf{D}^{\text{ext}} = \varepsilon_{\text{vacuum}} \mathbf{E}$ и вектора результирующего поля, индуцированного свободными носителями заряда \mathbf{D}^{free}. Надо отметить, что в формуле (1.3) отрицательный знак перед σ_{pol} является следствием соглашения, принятого для определения вектора поляризации. Так, вектор поляризации в твердом теле направлен от отрицательно заряженного интерфейса к положительно заряженному интерфейсу, в то время как вектор напряженности поля направлен противоположно. Таким образом, в большинстве случаев вектор электрического поля \mathbf{E} будет иметь противоположное направление по отношению к вектору поперечной поляризации \mathbf{P}^T.

$$\text{div} \mathbf{D} = \sigma.$$ (1.2)
В [1] рекомендуется разложение вклада свободных носителей D_{free} на два слагаемых: D_{bulk} обусловлен распределением носителей заряда внутри объема образца и D_{surf} обусловлен эффектом экранирования на внешних поверхностях образца. Существование последнего подтверждено экспериментально присутствием двумерного электронного газа на поверхности [27, 28] и обусловлено теми соображениями, что макроскопический образец не может обладать напряженностью поля, среднее значение которого по всему образцу не стремится к нулю. В самом деле, при конечной температуре присутствие вектора электрического поля вызывает дрейф свободных носителей заряда, и, следовательно, ток, который не может непрерывно существовать в разомкнутой цепи. В массивных гомогенных образцах D_{surf} тривиально связано с вектором поперечной поляризации соотношением

$$D_{\text{surf}} = P^T.$$

(1.5)

В многослойных наноструктурах, созданных из n слоев толщиной l_k с вектором поперечной поляризации P_k^T выражение для вектора индукции поля, обусловленной поверхностным зарядом определяется следующей формулой:

$$D_{\text{surf}} = \frac{\sum_k l_k P_k^T / \varepsilon_k}{\sum_k l_k / \varepsilon_k}.$$

(1.6)

Включая (1.6) в выражение (1.4) мы получаем выражение для вектора напряженности электрического поля в j-ом слое:

$$E_j = \frac{\sum_k l_k P_k^T / \varepsilon_k - P_j^T \sum_k l_k / \varepsilon_k}{\varepsilon_j \sum_k l_k / \varepsilon_k},$$

(1.7)

с суммами, пробегающими по всем слоям. Это общее выражение для любой толщины слоя (ямы или барьера) в обобщенной наноструктуре (например МКЯ), где интерфейсы между слоями ориентированы в направлении $[0001]$. Уравнение (1.7) имеет два важных предельных случая. Первый случай – одиночная квантовая яма. Слой ямы толщиной l_W заключен между двумя бесконечно толстыми слоями B_L и B_R. В этом случае вектор напряженности электрического поля внутри слоя ямы определяется выражением
где $\mathbf{P}^{T}_{B_{L,R}}$ — векторы поперечной поляризации в барьерах с левой и правой стороны от ямы. Обратим внимание, что уравнение (1.8) симметрично относительно смены сторон барьеров, так как играет роль только величина их средней поляризованности. За пределами ямы — в барьерах — напряженность поля возникает на интерфейсе со слоем ямы, и его амплитуда определяется выражением:

$$
\mathbf{E}_{W} = \frac{1}{2} \left(\mathbf{P}^{T}_{B_{L}} + \mathbf{P}^{T}_{B_{R}} \right) - \mathbf{P}^{T}_{W},
$$

(1.8)

Это уравнение относится к системе, не учитывающей экранирование свободными носителями заряда. В действительности, величина поля при удалении от КЯ уменьшается из-за эффекта экранирования, обусловленного аккумуляцией свободных носителей заряда на краях слоя ямы в соответствии с законом Гаусса.

Второй предельный случай уравнения (1.7) представляет собой структуру инфинитной сверхрешетки, где слои различных эпитаксиальных интерфейсов чередуются в направлении пироплектической оси. Это позволяет рассчитывать диэлектрические проницаемости твердого тела, как описывает Бернардии [29, 30]. В простом случае, представленном чередованием двух слоев A и B, можно записать вектора напряженностей электростатических полей следующим образом:

$$
\mathbf{E}_{A} = \frac{l_{B} \left(\mathbf{P}^{T}_{B} - \mathbf{P}^{T}_{A} \right)}{(l_{A} \varepsilon_{B} + l_{B} \varepsilon_{A})},
$$

(1.10)

и

$$
\mathbf{E}_{B} = \frac{l_{A} \left(\mathbf{P}^{T}_{A} - \mathbf{P}^{T}_{B} \right)}{(l_{A} \varepsilon_{B} + l_{B} \varepsilon_{A})},
$$

(1.11)

где $\mathbf{P}^{T}_{A,B}$ — вектора поперечных поляризаций слоев. Стоит отметить, что уравнения (1.10) и (1.11) корректно описывают предельный случай объемного образца ($l_{B} = 0$), когда сверхрешетка состоит из одного слоя. В этом случае напряженность
электрического поля E_A стремится к нулю, несмотря на наличие поперечной поляризации P^T_A.

В случае наноструктур с непрерывно меняющимся составом, для вычисления напряженности электрического поля необходимо проводить самосогласованное решение дифференциального уравнения Пуассона. В простом одномерном случае, когда состав является функцией координаты z от поверхности образца, имеем следующее выражение:

$$
\varepsilon(z) \frac{d}{dz} E(z) + E(z) \frac{d}{dz} \varepsilon(z) = \frac{d}{dz} \left(D(z) - P^T(z) \right). \tag{1.12}
$$

Соотношения (1.7) и (1.12) показывают, что поляризационно индуцированное электрическое поле в системе не может быть рассчитано без информации о геометрии системы, ведь именно неоднородности системы (например в виде поверхностей и интерфейсов) позволяют поляризованному состоянию проявляться в качестве электрического поля. При этом отсутствие напряженности электрического поля в интересующем направлении – перпендикулярно росту слоев – не свидетельствует о том, что система не находится в поляризованном состоянии. С другой стороны, в большинстве случаев электрическое поле, индуцированное состоянием поляризации, не обязательно пропорционально и параллельно вектору поляризации. Существуют геометрии структур, где в направлении роста отсутствуют макроскопические электрические поля в присутствии сильного поляризационного состояния. Уравнение (1.4) показывает, что расчет макроскопических полей в гетероструктурах требует знания обоих видов поляризационных состояний, а также диэлектрической проницаемости компонент.

1.2.3 Зависимость степени поляризованности слоев от кристалллографического направления роста

Природа поляризованного состояния в AIII-N, ее зависимость от состава и напряжения деформации, отношение связи вектора поляризации и вектора напряженности электрического поля в слоях полупроводниковых материалов
обсуждались в предыдущих разделах. В данном разделе будет рассмотрена возможность построения наноструктур без встроенного электрического поля, несмотря на присутствие пироэлектрической оси. Известно, что квантово-размерный эффект Штарка, порождаемый электрическим полем в МКЯ, является одним из препятствующих факторов эффективного использования III-нитридов для применения в оптоэлектронике (например, белые светодиоды или синие лазерные диоды). Возможность роста III-нитридов в структуре цинковой обманки была бы прямым решением поставленной проблемы, но вопреки большим усилиям ученых такой материал подходящего качества для изготовления приборных устройств еще не получен.

На сегодняшний день создание наноструктуры с определенной геометрией является наиболее приемлемым решением проблемы возникновения внутренних электрических полей. Вид геометрии может быть выведен из электростатических законов. Напомним, что уравнение (1.7) было получено из предположения, что интерфейсы между слоями наноструктуры ориентированы в направлении [0001]. Если материал образца имеет непрерывно меняющийся состав, то должно использоваться более общее выражение, для нахождения вектора напряженности электрического поля. Подставляя (1.2) в (1.3) получаем следующее выражение:

\[
\text{div} \mathbf{P}^T(r) = -\text{div} \left(\varepsilon(r) \mathbf{E}(r) \right) = \mathbf{E}(r) \nabla \varepsilon(r) - \varepsilon(r) \text{div} \mathbf{E}(r),
\]

где \(r \) отражает пространственную зависимость указанных величин в неоднородной системе. Поперечная поляризация должна быть рассчитана с учетом величины вектора спонтанной поляризации \(P_{SP} \) и деформаций \(\eta \) [1]:

\[
P^T_i(r) = P_{i,SP}(r) + \sum_{jk} e_{ijk}(r) \cdot \eta_{jk}(r),
\]

где индексы \(i, j, k \) пробегают через декартовы координаты \(x, y \) и \(z \) вектора поляризации и пьезоэлектрического тензора \(e_{ijk} (\eta_{jk}) \). В большинстве случаев требуется численное решение данной задачи. Но этого можно избежать, если наноструктура представляет собой набор МКЯ, созданный из композиционно однородных слоев, интерфейсы которых ориентированы в одном направлении. В таком случае электрическое поле будет однородно внутри каждого слоя. В
зависимости от взаимной ориентации направления роста слоев и пироэлектрической оси величина поперечной поляризации слоев будет изменять свое значение. Формирование электрического поля в этих слоях (например МКЯ) не будет соответствовать соотношению (1.7). В самом деле, выражение для напряженности электрического поля должно учитывать эффект, обусловленный нарушением непрерывности в направлении вектора поляризации поперек интерфейса. В этом случае более общее выражение (1.3) сокращается до следующего:

$$\sigma = \mathbf{n} \cdot (P_B^T - P_A^T), \tag{1.15}$$

где \mathbf{n} – нормированный вектор, перпендикулярный рассматриваемому интерфейсу. Кроме того, чтобы сохранить корректность знака σ, указанную в формуле (1.3), вектор \mathbf{n} должен быть направлен от слоя A к слою B. Для вектора напряженности электрического поля при этом сохраняется корректность выражения (1.2). Надо отметить, что в наноструктуре с параллельными интерфейсами формула (1.2) предсказывает, что вектора напряженностей электрических полей будут всегда ориентированы перпендикулярно интерфейсу, несмотря на направление вектора поляризации в каждом слое. Соответственно, уравнение (1.7) может быть переписано для МКЯ с произвольной ориентацией в виде:

$$E_j = \frac{\sum_k l_k p_{k,\perp}^T}{\varepsilon_k} - \frac{p_{j,\perp}^T \sum_k l_k}{\varepsilon_j \sum_k \frac{l_k}{\varepsilon_k}}, \tag{1.16}$$

$P_{k,\perp}^T$ является компонентой поляризации k-ого слоя, нормального к интерфейсу:

$$p_{k,\perp}^T = (\mathbf{n}_k \cdot P_k^T) \mathbf{n}_k, \tag{1.17}$$

с направлением вектора \mathbf{n}_k от k-ого к $k+1$ слою. Уравнение (1.16) также указывает, что только нормальная к плоскости ямы компонента вектора поляризации имеет ненулевое значение. В МКЯ, ориентированных в направлении [0001], в качестве константы диэлектрической проницаемости может быть использована компонента ε_{33} диэлектрического тензора. В случае произвольной ориентации
такой подход может быть неприменим и должно быть использовано соответствующее значение диэлектрической проницаемости ε_\perp [1]. Оно может быть получено из тензора диэлектрической проницаемости ε_{ij}:

$$
\varepsilon_\perp = \sum_{ij} \mathbf{n}_i \varepsilon_{ij} \mathbf{n}_j.
$$

(1.18)

Когда рассматривается задача поиска дизайна структуры МКЯ без электрических полей, можно найти тривиальное решение, выращивая слои перпендикулярно пироэлектрической оси, так что P_\perp^T стремится к нулю. Именно в этом случае вектор P_{sp} будет перпендикулярен направлению роста МКЯ, а пьезоэлектрическая компонента вектора поляризации будет иметь то же направление, что и вектор спонтанной поляризации, при условии, что нет деформаций сдвига в слоях, формирующих наноструктуру. Эти предположения были сделаны авторами [31, 32]. Ими были выращены AlGaN/GaN МКЯ на поверхности подложки γ–LiAlO$_2$, который является материалом с тетragональной структурой, интерфейс (001) которого образует идеальную поверхность зародышеобразования для прямоугольной призматической плоскости GaN ("M"-плоскость). В МКЯ, выращенных в направлении [1100], пироэлектрическая ось лежит в плоскости роста. Поэтому в отсутствии деформаций сдвига, как в рассматриваемом случае, никаких электрических полей в полярной структуре возникать не будет. Авторы показали преимущества выращивания МКЯ в геометрии, свободной от электрических полей и, вместе с тем, трудности выращивания III-нитридов на экзотической подложке γ–LiAlO$_2$.

Парк с коллегами [33] показали, что малая величина напряженности электрического поля может быть достигнута для AlGaN/GaN МКЯ при наклоне нормали направления роста по отношению к направлению [0001], отличном от 90°. Этот эффект неизвестен в других материалах: в случае структур цинковой обманки InGaAs/GaAs МКЯ интерфейс, выращенный в [111] полярной ориентации (эквивалентной [0001] в гексагональной структуре), показывает сильную пьезоэлектрическую неоднородность, в то время как при росте вдоль [001] и [110] неполярных ориентаций пьезоэлектрическая составляющая падает до
нуля [34]. Пьезоэлектрическая ось [111] не ортогональна неполярным направлениям [001] и [110] и образует с ними углы 54.7° и 35.2°, соответственно. Очевидно, так как гексагональная структура III-нитридов и структура кубических полупроводников III-V схожи, в КЯ созданных на основе полупроводников с гексагональной решеткой, нулевая пьезоэлектрическая поляризация может быть найдена для углов, отличных от 0° и 90°. Это действительно имеет место для слоев AlGaN/GaN и InGaN/GaN, направление роста которых отклонено от направления [0001], где вектор \(\mathbf{P}_{PZ} \) ориентирован вдоль плоскости интерфейса, и значение компоненты \(P_{PZ,\perp} \) стремится к нулю. Например, в работе [35] со слоями МКЯ In\(_{0.1}\)Ga\(_{0.9}\)N/GaN, выращенными с отклонением от оси \(c \), показано, что возможно достичь стремления к нулю пьезоэлектрического эффекта, ориентировав структуру под углом 39° по отношению к пироэлектрической оси. Отметим, что в указанной работе эффект спонтанной поляризации не учитывается. InN и GaN имеют сильное рассогласование решеток со схожими значениями \(P_{SP} \) (см. таблицы 1, 2). Точный расчет не может полагаться на приближение такого рода, поэтому в данной работе предполагается учитывать спонтанную поляризацию. Детальное описание формул, используемых в расчете \(\mathbf{P}_{PZ} \), может быть найдено в [36, 37]. Отметим что для МКЯ, выращенных в (10\(1\)0) и (11\(2\)0) плоскостях, отсутствие электрического поля не связано со значениями \(P_{SP} \) и пьезоэлектрическими коэффициентами. Правильные значения углов, при которых значение электрического поля стремится к нулю, могут зависеть от многих факторов [1].

1.3 Методы расчета электронной структуры МКЯ

1.3.1 Основные применяемые уравнения

Процессы, проходящие в полупроводниковых устройствах, могут быть описаны тремя основными дифференциальными уравнениями в частных
производных. Уравнение Пуассона описывает связь распределения электростатического потенциала φ с распределением зарядов:

$$\nabla(\varepsilon \varphi) = q(n(\varphi) - p(\varphi) + N_A(\varphi) - N_D(\varphi)),$$

(1.19)

а уравнения непрерывности для электронов и дырок описывают изменение концентрации носителей зарядов:

$$\frac{\partial n}{\partial t} = G_n - U_n + \frac{1}{q} \nabla J_n,$$

(1.20)

$$\frac{\partial p}{\partial t} = G_p - U_p + \frac{1}{q} \nabla J_p,$$

(1.21)

где

$$J_n = q\mu_n \mathbf{E} + qD_n \nabla n$$

(1.22)

и

$$J_p = q\mu_p \mathbf{E} + qD_p \nabla p$$

(1.23)

– выражения для плотности тока электронов и дырок.

Здесь N_D и N_A – концентрации доноров и акцепторов, соответственно, J_n и J_p – векторы электронных и дырочных токов, U_n и U_p, G_n и G_p – коэффициенты рекомбинации и генерации электронов и дырок, μ_n и μ_p – подвижности электронов и дырок, D_n и D_p – коэффициенты диффузии электронов и дырок.

Уравнения непрерывности описывают законы сохранения заряда. Численная схема для решения уравнений непрерывности должна удовлетворять следующим условиям:

1. Сохранение полного заряда в устройстве с учетом втекающего и вытекающего тока.

2. Отвечать требованию монотонности решения (т.е. не должно появляться пространственных осцилляций).

Отметим, что уравнения (1.20) и (1.21) справедливы в пределе малого отклонения от равновесия, так как соотношение Эйнштейна используется с коэффициентом диффузии, нормально подтвержденном для слабых полей. Члены генерации и рекомбинации G и U в общем виде будут функцией локальной концентрации электронов и дырок.
Рассматриваемые уравнения образуют систему нелинейных уравнений. Поэтому невозможно получить решение напрямую за одну итерацию, и необходимо применять методы решения нелинейных уравнений. Два наиболее распространенных метода для решения таких уравнений численными методами – это итеративный метод Гуммеля и метод Ньютона. Обычно сложно определить оптимальную стратегию решения, так как это зависит от параметров моделируемого устройства. В общем, существует три варианта выбора переменных:

1. Натуральные переменные \((\varphi, n, p)\).

2. Формулирование при помощи квазиуровней Ферми \(\varphi, E_{F_n}, E_{F_p}\), где квазиуровни Ферми связаны следующими соотношениями с концентрациями в условиях отклонения от равновесия (в невырожденном случае):

\[
\begin{align*}
n &= n_i \exp \left(\frac{q(V - E_{F_n})}{k_B T} \right), \\
p &= p_i \exp \left(\frac{q (E_{F_p} - V)}{k_B T} \right).
\end{align*}
\]

(1.24) (1.25)

3. Формализация Слотбума [38], где переменные определяются следующим образом:

\[
\begin{align*}
E_{F_n} &= n_i \exp \left(-\frac{q \varphi_n}{k_B T} \right), \\
E_{F_p} &= p_i \exp \left(-\frac{q \varphi_p}{k_B T} \right).
\end{align*}
\]

(1.26) (1.27)

Обычно, есть преимущество для формализации с использованием квазиуровней Ферми для равновесного состояния и для натуральных переменных \(n\) и \(p\) при моделировании переходных процессов.

После разбиения на сетке решения могут быть получены при помощи итеративных методов, алгоритмы которых, как правило, начинаются с некого нулевого приближения. Два основных метода решения и нюансы алгоритмов рассмотрены в следующих разделах.
1.3.2 Дискретизация параметров и методы решения

Для численного решения уравнений непрерывные переменные и функции дифференциальных уравнений должны быть представлены на вычислительной сетке в дискретном виде. При этом операторы дифференцирования замещаются конечными разностями. При численном решении нелинейных уравнений широко применяется два метода решения: метод Гуммеля и метод Ньютона [39, 40].

В зависимости от моделируемого устройства и диапазона воздействий на него, тот или иной метод может быть более подходящим. Нелинейная итерация обычно сходится либо линейно, либо квадратично, ошибка на каждой итерации, как правило, уменьшается с той же скоростью. Для нахождения точного решения квадратичный метод предпочтен по сравнению с линейным. Метод Ньютона является квадратичным, метод Гуммеля — линейным [41].

Остающаяся на каждой итерации ошибка может быть измерена двумя способами. Первый, известный как правая норма, является разностью между левой и правой частями уравнения (1.19). Правая норма — наиболее распространенный метод измерения ошибки. Если задача характеризуется нулевым смещением, то всегда существует остаточный ток, обусловленный ошибкой в вычислениях, и правая норма может быть интерпретирована как величина этого тока. В качестве альтернативного метода ошибка может быть измерена как величина поправки на итерации. Поправки являются неизвестными x на каждом шаге, тогда такая поправка называется норма X.

Итерация будет заканчиваться при выполнении одного из следующих условий:

– Поправка падает ниже заданной погрешности.
– Выполнено заданное число циклов. (Этот критерий используется только в особых случаях.)

Лицензированная для численного решения система может быть решена либо прямым методом (исключение Гаусса), либо внутренним (линейным) итерационным методом. В общем случае, прямой метод более стабилен, однако
ресурсные затраты на внутренней итерации медленнее с увеличением разрядности сетки.

1.3.3 Раздельное решение (метод Гуммеля)

При использовании метода Гуммеля уравнения решаются последовательно. Уравнение Пуассона решается в предположении фиксированных квазиуровней Ферми. Нелинейное уравнение решается во внутреннем цикле методом Ньютона. Полученный новый потенциал подставляется в уравнения непрерывности, которые являются линейными и могут быть решены без итераций. Новая концентрация носителей заряда снова используется в уравнении Пуассона и начинается следующий цикл [39].

На каждом этапе решается только одно уравнение. В ходе расчета один набор переменных остается неизменным, пока рассчитывается другой набор. Сходимость метода зависит от степени связанности уравнений. Наиболее важной связью является член дрейфового тока носителей заряда, который напрямую связан с решением уравнения Пуассона. В случаях, когда дрейфовый член является вторичным, например, в изолирующих структурах, метод Гуммеля может применяться. Если в токе преобладает дрейфовая составляющая, например в резистивной структуре, то сходимость метода будет медленной.

Одним из наиболее распространенных способов оптимизации является использование итеративного метода для решателя линейных уравнений, имеющего наибольшую степень вложенности. (существует три вложенных цикла: внешний цикл Гуммеля, цикл линеаризирующий уравнение Пуассона и внутренний цикл, который решает линеаризованную систему). Таким образом, в каждом цикле алгоритма Гуммеля совершает только одно прямое обращение матрицы для каждого типа носителей заряда и одно итеративное решение уравнения Пуассона. Решение для обратно смещенного перехода без учета токов (решение только уравнения Пуассона) не требует исключения Гаусса, является наиболее быстрым методом решения и подходит для вольт-фарадного
профилирования и для задач с нулевым смещением. Такой подход может быть использован для нахождения начальных условий при решении другими методами.

Итеративный метод incomplete Cholesky conjugate gradient (ICCG) (неполный сопряженный градиент Шолески) [39] позволяет находить решение уравнения Пуассона посредством минимизации энергии электростатического поля и является одним из наиболее быстрых итеративных решателей, который может использоваться на неравномерной сетке. Он рекомендуется при любом применении метода Гуммеля, особенно для решения на больших сетках. Более сложный механизм – это Ньютоновское гашение, описанный в [41]. Этот алгоритм отбрасывает величины, которые могут привести к несходимости.

1.3.4 Совместное решение (метод Ньютона)

В методе Ньютона все переменные задачи возможно изменять в ходе итераций, так как учитываются все связи между переменными. Благодаря этому алгоритм Ньютона очень стабилен и время сходимости практически не зависит от начального смещения даже при высокой степени инжекции. Базовый алгоритм представляет собой обобщение метода Ньютона-Рафсона для корня одного уравнения. Переписывая уравнения (1.19), (1.22), (1.23) в виде:

\[G_\varphi (\varphi, n, p) = 0 \]
\[G_n (\varphi, n, p) = 0 \]
\[G_p (\varphi, n, p) = 0 \]

и задавая начальные значения для неизвестных в каждой точке \((\varphi_0, n_0, p_0)\), рассчитываем поправку \((\Delta \varphi, \Delta n, \Delta p)\), решая линейную систему

\[
\begin{bmatrix}
\frac{\partial G_\varphi}{\partial \varphi} & \frac{\partial G_\varphi}{\partial n} & \frac{\partial G_\varphi}{\partial p} \\
\frac{\partial G_n}{\partial \varphi} & \frac{\partial G_n}{\partial n} & \frac{\partial G_n}{\partial p} \\
\frac{\partial G_p}{\partial \varphi} & \frac{\partial G_p}{\partial n} & \frac{\partial G_p}{\partial p}
\end{bmatrix}
\begin{bmatrix}
\Delta \varphi \\
\Delta n \\
\Delta p
\end{bmatrix} = -
\begin{bmatrix}
G_\varphi \\
G_n \\
G_p
\end{bmatrix}.
\]
Недостаток метода Ньютона заключается в том, что при работе на большой сетке требуется значительное количество машинных ресурсов для операций с матрицей, в частности, при ее инвертировании. Обычно матрицы размерностью 3Nх3N и 2Nх2N требуют, соответственно, в двадцать и семь раз больше времени на инвертирование, чем матрица размером NхN. При возможности исключения из решения неосновных носителей заряда или при отсутствии токов размерность матрицы уменьшается.

Таким образом, расчетная нагрузка на одной итерации довольно большая, но число итераций мало, и колеблется обычно между тремя и восемью. Большое число итераций в методе Ньютона гарантированно означает, что задача поставлена ошибочно. Например, граничные условия не удовлетворяют физическим законам.

Единственное значительное ускорение расчета итерации в методе Ньютона дает метод Ньютона-Ричардсона, который трансформирует матрицу Якоби, только когда это необходимо [41].

Выводы по главе 1

1. Рассмотрена природа возникновения спонтанного и напряженного поляризованного состояний в структурах на основе соединений GaN. Спонтанное поляризованное состояние обусловлено особенностями кристаллической гексагональной структуры, приводящими к нежквивалентности связей ближайших атомов, за счет чего происходит относительное смещение центров положительного и отрицательного зарядов. Выращивание упругонапряженных слоев твердых растворов на основе нитридов также может являться причиной изменения длин связей, и вызывать смещение центров положительных и отрицательных зарядов, что выражается в упруго-напряженной (пьезоэлектрической) поляризации. Возникновение такого вида поляризации зависит от направления роста слоев
кристаля. Показано негативное влияние поляризованного состояния на эффективность работы светоизлучающих структур с квантовыми ямами InGaN/GaN в активной области.

2. Проведен обзор современных литературных источников по основным параметрам бинарных полупроводников GaN, InN и твердых растворов InGaN (значения постоянных решеток, векторов спонтанной поляризации, пьезоэлектрических констант, констант упругости, диэлектрических проницаемостей и др.). Подобраны параметры прогиба для расчета соответствующих значений тройного раствора InGaN.

3. На основе литературных источников обсуждается возможность выращивания многослойных структур на основе III-нитридов без встроенного электрического поля или с меньшей величиной поля в сравнении с традиционно используемыми структурами, выращенными в направлении [0001].

4. Рассмотрены общие принципы, основные дифференциальные уравнения и наиболее распространенные методы моделирования полупроводниковых структур. Рассмотрены подходы к моделированию приборов как при прямом, так и при обратном смещении.
2. Экспериментальные методы.

Аппаратная реализация методов спектроскопии адмиттанса

2.1. Методы спектроскопии адмиттанса

Под адмиттансом понимается полная проводимость объекта, которая векторно складывается из активной и реактивной составляющих [5]:

\[Y = G + j(\omega C - \frac{1}{\omega L}), \]

где \(G \) – проводимость, \(C \) – емкость, \(L \) – индуктивность, \(\omega \) – частота измерительного сигнала. Как будет показано далее, в проведенных адмиттанских исследованиях индуктивная составляющая проводимости пренебрежимо мала, и поэтому не будет учитываться в дальнейшем. Изучение температурных и частотных спектров проводимости и емкости вместе с исследованием вольт-фарадных (C-V) характеристик и регистрацией переходных процессов захвата и эмиссии носителей заряда в рамках универсального комплекса спектроскопии адмиттанса обеспечивает широкие возможности характеристики современных наногетероструктур [5]. В реальной экспериментальной практике адмиттанс измеряется с помощью приборов, называемых измерителями иммитанса (иммитанс – общее название для импеданса и адмиттанса). При измерении адмиттанса нелинейного полупроводникового прибора, которым является \(p-n \)
переход или барьер Шоттки, прибор выдает значения измеряемой величины на той же частоте, что и вынуждающей сигнал.

В зависимости от цели исследования, характеристик измеряемой структуры и свойств примесных центров в рамках спектроскопии адmittанса возможна реализация квазистатических, динамических и нестационарных методов, как показано на рисунке 2.1.

Квазистатические методы в классическом представлении подразумевают измерение вольт-фарадных характеристик гетероструктуры и получение на их основе распределения так называемого «наблюдаемого» профиля концентрации свободных носителей заряда по структуре [42, 43]. Из нестационарных методов измерения admittанса можно привести методы DLTS (Deep Level Transient Spectroscopy) или НЕСГУ (Нестационарная емкостная спектроскопия глубоких уровней) [44, 45], которые успешно применяются и в настоящее время для исследования переходных процессов в полупроводниках. Динамические методы (по классификации [5]) являются относительно новыми, они возникли с появлением универсальных многочастотных измерителей иммитанса. Динамические методы подразумевают исследование admittанса структуры в зависимости от температуры при воздействии тестового переменного сигнала различной частоты [5, 46]. На практике квазистатические и динамические методы часто используют совместно для исследований полупроводниковых структур, отдельно от нестационарных методов. Отчасти, это связано с организацией эксперимента и спецификой оборудования, требуемого для приведенных методик. В данной работе развиваются квазистатические и динамические методы исследования admittанса наноструктур с наноразмерными объектами.
Основы динамической адмиттансной спектроскопии можно пояснить с помощью зонной диаграммы перехода металл-полупроводник с барьером Шоттки (рисунок 2.2). Приложенное к образцу переменное напряжение тестового сигнала вызывает перезарядку ловушек вблизи границы области объемного заряда (ООЗ). Перезарядка мелких центров происходит практически мгновенно (большой пик на зависимости $\delta\rho(t)$), а центры с глубокими уровнями в запрещенной зоне испытывают медленную периодическую ионизацию/нейтрализацию вблизи точки пересечения соответствующего энергетического уровня (примесный уровень в объеме или уровень квантования в квантовой яме гетероструктуры) с уровнем Ферми, этому процессу соответствует меньший пик на зависимости $\delta\rho(t)$ [47]. Данные процессы носят релаксационный характер, постоянная времени ионизации зависит от температуры наблюдения и может быть сравнима (или существенно больше) по величине с периодом переменного сигнала, что вызывает задержку отклика по отношению к изменениям приложенного смещения. В этом случае адмиттанс будет содержать частотно зависимую компоненту активной проводимости, а глубокий уровень перезаряжается не полностью.
Рисунок 2.2 – (а) Зонная диаграмма обратно смещенного барьера Шоттки в присутствии глубоких уровней. (б) Соответствующая плотность заряда в ООЗ. (с) Приращение плотностей заряда, связанных с электронами, дырками и зарядом на глубоких центрах.
2.1.1 Емкость полупроводниковой структуры

В адмиттансных методах информация об исследуемом объекте получается путем анализа измеряемых прибором емкости и проводимости в зависимости от внешних воздействий на образец, причем под емкостью понимается барьерная емкость полупроводниковой структуры. Поэтому одним из условий применения методов адмиттанса является возможность индуктирования в исследуемой структуре области объемного заряда. А понятие емкости полупроводника с p-n переходом или барьером Шоттки играет ключевую роль для всей группы методов.

Емкость обедненного слоя полупроводника (барьерная емкость) и емкость плоскопараллельного конденсатора значительно различаются. В отличие от обычного конденсатора, обедненный слой барьера Шоттки или p-n перехода содержит распределенный фиксированный пространственный заряд ионов, и результирующее поле оказывается неоднородным. Когда прикладываемое к диоду смещение увеличивается на \(\Delta U \), ширина обедненной области увеличивается, вызывая увеличение пространственного заряда. Заряд \(Q \) при этом увеличивается нелинейно при изменении \(U \), и фиксированная линейная емкость не может быть определена, поэтому вводят понятие дифференциальной емкости области обеднения:

\[
C = S \lim_{\Delta U \to 0} \left(\frac{\Delta Q}{\Delta U} \right) = S \frac{dQ}{dU}. \tag{2.2}
\]

Решая уравнение Пуассона и принимая ряд приближений (малосигнальное \(\frac{kT}{e} \gg U \), полной ионизации примеси \(n_0 = N_d^+ \) и т.п.), в ряде случаев хорошо работающих на практике, возможно получить выражение для емкости обедненного слоя барьера Шоттки [5, 42]:

\[
C = S \sqrt{\frac{\varepsilon_0 e N_d^+}{2(U - kT/e)}}. \tag{2.3}
\]

График зависимости \(C^2 \) от приложенного обратного смещения \(U_r \) в однородном материале линеен и имеет наклон, пропорциональный \((N_d^+) \), а точка
пересечения с осью абсцисс отсекает величину \(U_b - kT/e\). На этом основан метод вольт-фарадного профилирования носителей заряда. При выводе \(2.3\) предполагается, что все переходные процессы происходят практически мгновенно (по крайней мере, по сравнению с периодом тестового сигнала измерителя), поэтому метод носит название квазистатического вольт-фарадного метода.

Активная составляющая сигнала (проводимость) в полупроводнике будет формироваться за счет протекания через р-п переход прямого или обратного токов, в которые вносит вклад эмиссия носителей заряда с глубоких центров, ловушек или уровней квантования гетероструктур с квантовыми ямами.

2.1.2 Квазистатические методы адмиттанса

Вольт-фарадное профилирование изначально применялось для определения равномерности уровня легирования объемных полупроводников. В этом случае продифференцированная по напряжению вольт-фарадная характеристика имеет вид профиля легирования примеси полупроводника:

\[
N(w) = \frac{C^3}{e\varepsilon_0 S^2 \left(\frac{dC}{dU} \right)^{-1}}.
\]

При этом толщина обедненного слоя \(w\), соответствующая емкости при определенном напряжении, равна

\[
w = \frac{\varepsilon\varepsilon_0 S}{C}.
\]

В случае барьера Шоттки приращение заряда происходит только на границе ООЗ, поэтому можно сопоставить определяемую толщину с текущей координатой границы области объемного заряда при заданном напряжении, считая положение барьера Шоттки началом отсчета.

Если образец содержит \(p-n\) переход, необходимо учитывать равенство суммарного положительного и отрицательного зарядов \(N_d x_n = N_a x_p\), тогда полная ширина ООЗ будет равна:
При исследовании активной области современных гетероструктур граница ООЗ сканирует области, обогащенные носителями заряда, такие как КЯ, КТ или δ-легированные слои. В этом случае на ВФХ будет наблюдаться плато, превращающееся в концентрационный пик при дифференцировании (2.4).

Вольт-фарадное профилирование дает относительно просто интерпретируемые результаты при соблюдении режима квазистатичности. Этот режим полностью выполняется для мелкой примеси, т.к. ее время максвелловской релаксации на несколько порядков меньше, чем период любого тестового сигнала LCR-метра. Имея в виду реальные условия адmittансного эксперимента, можно сформулировать количественное условие “квазистатичности”. А именно: скорость эмиссии электронов с наблюдаемого уровня e_n должна быть намного выше частоты вынуждающего тестового сигнала ω:

$$e_n \gg \omega.$$ (2.7)

Нарушение условия квазистатичности приводит к инерционным эффектам в измерениях – неполной ионизации центра, сдвигу наблюдаемых особенностей в концентрационном профиле и др. Эти эффекты наблюдались нами при емкостных измерениях квантовых ям и подробно анализируются в главе 4.

Как видно из соотношения (2.7), соблюдение условия квазистатичности зависит как от параметров регистрируемого уровня, так и от условий эксперимента, в частности, от частоты измерительного сигнала. Таким образом, экспериментатор в определенных пределах может регулировать выполнение условия квазистатичности. Следует отметить, что раньше при проведении вольт-фарадных исследований использовались емкостные измерители с фиксированной частотой тестового сигнала и поведение уровня зависело только от свойств материала и температуры эксперимента. Использование гелиевых криостатов и современных измерителей иммитанса значительно расширило возможности...
экспериментаторов, выведя спектроскопию адmittанса на качественно новый уровень.

2.1.3 Динамические методы адmittанса

В рамках динамических методов адmittанса исследуются зависимости проводимости и емкости в широких пределах температур и частот, создавая условия для наблюдения периодического заполнения и опустошения наблюдаемых центров. Как отмечалось, динамические методы являются эволюционным развитием нестационарных методов, таких, например, как DLTS и ИРЕ. Это развитие стало возможным благодаря появлению нового класса приборов – измерителей иммитанса или RLC-метров, а также благодаря возможности использования в исследовательских лабораториях гелиевых криостатов, обеспечивающих термостабилизацию измеряемого образца в широких диапазонах температур от самых низких – порядка 10 К.

Данная методика позволяет определять энергетические характеристики глубоких уровней и уровней размерного квантования и судить об их природе. Температурные и частотные спектры адmittанса довольно сложны в интерпретации, но дают важную информацию об исследуемом центре. Уровни с различной глубиной залегания обладают различными динамическими свойствами, что выражается в разделении пиков в спектре проводимости при сканировании по температуре. Пик в проводимости, сопровождающийся перегибом в температурной зависимости емкости образца, наблюдается при соблюдении условия [5]:

\[\omega = e_n. \] (2.8)

Исследуя зависимость емкости и проводимости образца с квантово-размерными слоями при температурах от гелиевых до комнатных, возможно наблюдать отклики от различных уровней квантования, вызванные эмиссией с них носителей заряда. В зависимости от частоты тестового сигнала максимальный выброс носителей будет происходить при разных температурах, соответствую
условию оптимальной термической эмиссии носителей заряда с энергетического уровня (2.8), или, что то же самое:

$$\omega \tau = 1,$$

где \(\tau = 1/e_n \) — постоянная времени эмиссии носителей заряда с глубокого уровня или уровня квантования. При этом скорость термической эмиссии носителей \(e_n \) с уровня в КЯ равна, как это получено в [48]:

$$e_n = A T^{1/2} \exp\left(-\frac{E_a}{kT}\right)$$

где \(A \) — коэффициент, не зависящий от температуры, \(E_a \) — энергия активации носителей заряда из КЯ. При увеличении частоты вынуждающего тестового сигнала для выполнения условия (2.9) максимум зависимости \(G/\omega(T) \) сдвигается в область больших температур.

Энергия активации носителей заряда с уровня квантования в КЯ или глубокого уровня в объеме полупроводника определяется по графику температурной зависимости скорости эмиссии, построенному в координатах Аррениуса \(\ln(e_n/T^{1/2}) = f(1/T) \), где в качестве параметра используется частота измерительного сигнала. Для сравнения, в методе DLTS таким параметром служит искусственно создаваемое окно скорости (rate window), определяемое выбором моментов считывания (стробов) [49].

Созданная нами для решения этих задач автоматизированная система диагностики является развитием предыдущей версии диагностического комплекса [46] и дает возможность проводить адмиттансые измерения отдельных приборов или чипов, а также пластин диаметром до двух дюймов в широком диапазоне смежений, температур и частот тестового сигнала. Система обеспечивает неразрушающий контроль электрофизических параметров приборов и тестовых структур на различных стадиях технологического процесса. Важной особенностью комплекса является наличие кварцевого окна, которое позволяет в едином процессе интегрировать электрофизические и оптические измерения.
2.2. Модернизированный аппаратно-программный комплекс

2.2.1 Особенности аппаратной составляющей комплекса

Для изучения свойств полупроводниковых структур и приборов, содержащих квантово-размерные объекты, принципиальной является возможность проведения измерений в широком диапазоне температур, что традиционно осуществлялось в лабораториях при использовании азотных либо гелиевых криостатов преимущественно проточного типа [50-57], или в последнее время на основе гелиевого замкнутого цикла Гиффорда-Мак-Магона ([58-60] и др).

Тенденции миниатюризации приборов, требование увеличения скорости измерений, а также необходимость измерений большого количества образцов (в том числе на одной пластине) без развакуумирования станции делают актуальным объединение возможностей низкотемпературного криостата с зондовой станцией, что реализовано нами в криогенной зондовой станции. Управление измерительными приборами自动化изировано с помощью компьютера [61, 62].

Компоновка автоматизированной системы диагностики электрофизических параметров светоизлучающих диодов и пластин основана на следующих критериях оптимального выбора приборов, составляющих аппаратно-программный комплекс:

1) возможность измерений в диапазоне температур от гелиевых до значительно превышающих комнатную;

2) наличие зондов, позволяющих дистанционно без развакуумирования системы осуществлять смену измеряемых образцов или чипов на пластине в режиме стабилизированной температуры;

3) наличие микроскопа с видеокамерой;

4) возможность проведения оптических измерений;

5) размер измеряемого образца – не менее 2 дюймов.
В состав созданного нами многофункционального комплекса входит система криостатирования образцов, состоящая из криогенной зондовой станции замкнутого гелиевого цикла Janis CCR-10-2-(2CXKEL-4PORTS) (рисунок 2.3), контроллера температуры LakeShore 336 и турбомолекулярного вакуумного поста Pfeiffer TSH 071E. В качестве измерителя электрических параметров полупроводников взят прецизионный LCR-метр Agilent E4980A [63] с базовой погрешностью измерений 0.05%, который обеспечивает измерение различных параметров: емкость, индуктивность, сопротивление, проводимость, импеданс, адmittанс, тангенс угла потерь, добротность, фазовый угол — и позволяет реализовать целый набор методов измерения. LCR-метр используется в
измерительном комплексе без каких-либо конструктивных изменений. Подключение LCR-метра к контактам образца осуществляется либо через стандартные кабели Agilent, либо с помощью контактных зондов криогенной станции. При необходимости измерений только при комнатной температуре могут быть использованы специальные калиброванные контактные устройства Agilent, подсоединяемые напрямую к прибору без использования проводов.

Таблица 3

Параметры аппаратно-программного комплекса спектроскопии адmittанса

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диапазон температур</td>
<td>От 15 до 475 К</td>
</tr>
<tr>
<td>Точность криостатирования</td>
<td>0.1 К</td>
</tr>
<tr>
<td>Время захолаживания до 15 К</td>
<td>Около 6 час.</td>
</tr>
<tr>
<td>Количество датчиков температуры</td>
<td>5</td>
</tr>
<tr>
<td>Количество нагревателей</td>
<td>3</td>
</tr>
<tr>
<td>Максимальный диаметр образца</td>
<td>50 мм (2")</td>
</tr>
<tr>
<td>Точность позиционирования зондов</td>
<td>до 5 мкм</td>
</tr>
<tr>
<td>Кратность увеличения микроскопа</td>
<td>x216</td>
</tr>
<tr>
<td>Диапазон частот тестового сигнала</td>
<td>От 20 Гц до 2МГц</td>
</tr>
<tr>
<td>Диапазон напряжений</td>
<td>± 40 В</td>
</tr>
<tr>
<td>Базовая погрешность измерений</td>
<td>0.05%</td>
</tr>
<tr>
<td>Измеряемые величины</td>
<td>C, G, tg δ, Idc, Vdc</td>
</tr>
<tr>
<td>Реализованные методы</td>
<td>C-V, G-V, C-T, G-T, C-f, G-f, I-V</td>
</tr>
</tbody>
</table>

В любом случае для исключения погрешностей перед измерениями проводится калибровка оборудования. Если в эксперименте предполагается использование только стандартных оригинальных контактных компонент Agilent, длина которых не превышает двух метров, для настройки LCR-метра может
использоваться стандартная поправка, задаваемая в меню прибора. При
использовании нестандартных кабелей или зондов перед измерениями проводится
калибровка прибора. Калибровка осуществляется автоматически на стандартных
частотах в режиме холостого хода и короткого замыкания. Для изменения и
стабилизации температуры образца в диапазоне 15…475 К в зондовой станции
использован гелиевый двухступенчатый криорефрижератор DE-204N,
работающий на основе замкнутого газового цикла Гиффорда-Мак-Магона,
гелиевый компрессор с водяным охлаждением и резистивный нагревательный
элемент, управляемый температурным контроллером. Внутри криогенной
зондовой станции находится инфракрасный экран, в котором размещен столик из
позволоченной бескислородной меди, обеспечивающий равномерность
распределения температуры по образцу не хуже 0.1 К, и система
антивибрационной развязки образца. Система не требует залива жидкых
хладагентов.
Система охлаждения работает в непрерывном режиме, а регулировка и
поддержание температуры осуществляется резистивным нагревательным
элементом под управлением контроллера температуры LakeShore 336 с
паспортной погрешностью не хуже ±0.1 К. Точность измерения температуры
достигается с помощью пяти датчиков температуры, расположенных в ключевых
узлах системы охлаждения. Непосредственно вблизи образца расположен
калиброванный датчик, гарантирующий погрешность измерения не более
±0.02 К. Сигналы с датчиков считаются с частотой 10 Гц, поступают на
высокоразрешающий 24-х битный аналого-цифровой преобразователь
контроллера температуры и обрабатываются по PID алгоритму для определения
значения мощности нагрева. Для предотвращения перегрева верхней ступени
вытеснителя криокулера, выполненной из текстолита, нагреватель с держателем
образцов установлен на тепловой мост. Контроллер температуры
автоматизирован через интерфейс GPIB.
Электрический контакт с образцом осуществляется двумя
микроманипуляторами со сменными пробниками различной конструкции из
вольфрама, вольфрама-никеля, бериллиевой меди и др. Материал, форма и качество игл влияют на электрические свойства контакта и степень механического воздействия на образец при изменении температуры во время сканирования более чем на 400°. Точное позиционирование зондов обеспечивается манипуляторами с прецизионными механическими приводами по трем координатам (X, Y и Z). Дополнительный электрический контакт к образцу может быть реализован непосредственно через столик. Для контроля микроманипуляторов служит моноскопическая оптическая система с 216-ти кратным увеличением, ПЗС-матрицей и 19" монитором, разрешение системы достигает 5 мкм, рисунок 2.3. Мониторинг осуществляется через горизонтальное оптическое окно из кварца диаметром 3", расположенное над предметным столиком.

Аппаратно-программный комплекс автоматизирован оригинальным программным обеспечением [64], созданным в среде графического программирования LabVIEW [65-67].

2.2.2 Программное обеспечение автоматизированного измерительного комплекса адmittанса

Интерпретация зависимостей параметров адmittанса от частоты, температуры и напряжения нетривиальна, но информативна, и во многих случаях позволяет получать не только энергию активации и другие параметры уровня, но и судить о его природе.

При проведении измерений алгоритм работы программы управления комплексом базируется на трех вложенных друг в друга циклах. Внешний цикл обеспечивает изменение по температуре с постоянным либо произвольным шагом, промежуточный цикл – по напряжению смещения и внутренний цикл – по заданному набору частот. Обоснование последовательности циклов по частоте и напряжению изложено нами ранее в [46]. Реализация запатентованного способа [68] со ступенчатым изменением температуры, во-первых, позволяет в едином температурном цикле получить обширную базу данных эксперимента,
включающую измерения искомых параметров на различных частотах (обычно не менее 10 частот в диапазоне от 20 Гц до 2 МГц) в широком диапазоне приложенных смещений (±40 В) с требуемым шагом по напряжению. Во-вторых, избежать возникновения тренда измеряемой величины, который может возникать в случае длительных измерений в каждой температурной точке при линейной развертке по температуре. Заметим, что возможность непрерывной линейной развертки по температуре с заданной скоростью ее изменения также предусмотрена в управляющей программе.

Набор специально разработанных процедур измерения и обработки данных позволяет реализовать ряд режимов измерения [61, 62]. Основными являются следующие: зависимость емкости и проводимости от температуры и приложенного смещения (C–T, G–T, C–V и G–V, соответственно), зависимость проводимости и емкости от частоты тестового сигнала (G–f, C–f), емкости от проводимости при определенной частоте (C–G или кривая Коула-Коула), вольт-амперные характеристики (I–V).

Для улучшения точности измерений сигнал многократно измеряется в каждой точке. За счет использования при автоматизации эксперимента встроенных утилит среды программирования LabVIEW при первичной математической обработке данных, поступающих с измерительных приборов, исключаются грубые ошибки измерений, а также выполняется статистическая обработка экспериментальных данных.

Измерения электрофизических параметров наноструктур в широких диапазонах воздействия на образец температурой и напряжением смещения и частоты тестового сигнала требует проводить более 10^6 высокоточных измерений за один цикл. Поэтому в поддержку комплекса написано оригинальное программное обеспечение (ПО) [64], которое позволяет полностью автоматизировать процесс измерений. Алгоритм ПО создан в соответствии с запатентованным [68] способом температурных измерений адmittанса и дает возможность проводить исследования и обработку результатов в рамках квазистатических и динамических методов спектроскопии admittancea [5].

ПО, предназначенное для математической обработки вольт-фарадных характеристик производит расчет профиля концентрации свободных носителей заряда в гетероструктуре с возможностью выбора режимов сглаживания (Фурье-фильтрация или метод скользящего среднего). По рассчитанным концентрационным профилям программа позволяет получить величину накопленного в структуре заряда.

Предназначением второй программы является расчет энергетических характеристик исследуемых структур из температурных и частотных спектров проводимости. ПО имеет возможность автоматического построения графиков в координатах Аррениуса \(\ln \omega = f(1/T) \) и расчета энергий активации носителей заряда с уровней квантирования, либо глубоких центров в исследуемых образцах.

2.3. Референтная система измерений на базе мостового емкостного измерителя МЦЕ-13АМ

Основной измеритель параметров адmittанса в составе измерительного комплекса – Agilent E4980А – построен по схеме системы широкодиапазонных операционных усилителей и обеспечивает измерения на любой частоте от 25 Гц до 2 МГц. Для обеспечения прецизионных количественных измерений ему требуется тщательная калибровка. Она обычно проводится в режиме холостого хода и короткого замыкания, но на ограниченном количестве реперных частот. При наличии сильных токов утечки во время измерений возможно возникновение значительной погрешности в измерении параметров адmittанса. Поэтому была создана референтная альтернативная система измерений иммитанса на базе
емкостного измерительного моста МЦЕ-13АМ [45, 67, 69]. Мост МЦЕ-13АМ является одночастотным прибором \(f = 1 \text{ МГц} \) и имеет набор встроенных образцовых конденсаторов для калибровки. Схема части емкостного моста МЦЕ-13АМ приведена на рисунке 2.4.

Рисунок 2.4 – Принципиальная схема емкостного моста МЦЕ-13АМ.

МЦЕ-13АМ имеет два канала общего пользования (КОП) для связи с внешними устройствами. Один – для обмена данными измерений емкости, второй – тангенса угла диэлектрических потерь. Оба канала передают данные в двоично-десятичной системе.

В настоящее время КОП-порт является устаревшим стандартом, поэтому не было возможности его подключения к компьютеру напрямую для передачи команд и чтения данных. Для связи прибора с компьютером нами использовалось две универсальные платы ввода/вывода NI DAQ PCI-6251. Плата DAQ PCI-6251 позволяет произвольным образом программировать имеющиеся аналоговые и цифровые каналы входа/выхода [70], что позволило осуществить автоматизацию прибора.
Так как МЦЕ-13АМ не обладает собственным прецизионным источником напряжения, то для подачи постоянного смещения был использован источник постоянного напряжения Agilent E3643A [71], подключение которого осуществлялось через специализированный вход на задней панели МЦЕ-13АМ. Для контроля падающего на образце напряжения использовался вольтметр Agilent 34401 [72]. Программное обеспечение для управления МЦЕ-13АМ, источником напряжения и вольтметром, а также общим алгоритмом работы измерений создано в среде LabVIEW. Общая принципиальная схема работы установки приведена на рисунке 2.5.

Измерительная система на базе емкостного измерительного моста МЦЕ-13АМ использовалась для проведения контрольных измерений получаемых при помощи RLC-метра Agilent 4890А.
Выводы по главе 2

1. Рассмотрены физические основы спектроскопии адмиттанса. Представлена классификация методов адмиттанса. Подробно изложены основы квазистатических и динамических методов спектроскопии адмиттанса.

2. Модернизирован аппаратно-программный комплекс спектроскопии адмиттанса на базе LCR-метра Agilent E4980A, криогенной зондовой станции Janis CCR-10-2-(2CXKEL-4PORTS), контроллера температуры LakeShore 336 и персонального компьютера. Комплекс позволяет проводить адмиттансные измерения полупроводниковых приборов в широком диапазоне температур (15…475 К), частот тестового сигнала (20 Гц…2 МГц) и напряжений смещения (±40 В).

3. Комплекс автоматизирован оригинальным программным обеспечением, созданным в среде графического программирования LabVIEW. Программное обеспечение позволяет с высокой эффективностью и точностью проводить измерения параметров адмиттанса в диапазоне температур, частот и приложенных к структуре смещений. Алгоритм работы программы защищен патентом [68] и свидетельствами о государственной регистрации программ №2010615375 и №2009615309.

4. На базе измерительного моста МЦЕ-13АМ, источника напряжения Agilent E3643A, мультиметра Agilent 34401 и персонального компьютера с GPIB- и DAQ-платами построена референтная система вольт-фарадных измерений. Система автоматизирована и позволяет проводить высокоточные измерения на частоте тестового сигнала 1 МГц.
3. Расчет электронного спектра и вероятностей переходов в квантовых ямах InGaN/GaN с учетом поляризованного состояния слоев

Компьютерное моделирование используется в работе для получения энергетического профиля дна зоны проводимости и потолка валентной зоны с учетом встроенного электрического поля, вольт-фарадных характеристик гетероструктур и расчета вероятностей электронно-дырочных переходов. Рассмотрим сначала метод расчета напряженности электрического поля в слоях InGaN/GaN, обусловленного спонтанной и пьезоэлектрической поляризацией в зависимости от кристаллографического направления и состава твердого раствора.

3.1 Расчет параметров поляризованного состояния в квантовых ямах InGaN/GaN

Расчет электрических полей, индуцированных поляризацией, является важнейшей задачей при моделировании и анализе полупроводниковых многослойных структур на основе нитридов. Было выполнено много работ для расчета поляризации в таких структурах, выращенных как в полярном, так и в полуполярном направлениях [111]. В данной работе проводится расчет поляризации в структурах с одиночной КЯ и МКЯ InGaN/GaN в зависимости от
ориентации структуры, состава и толщины слоев. Мы используем в данной работе подход, предложенный авторами [37].

Структуры нитридов в различных кристаллографических направлениях могут быть получены эпитаксиально на сапфировых подложках [73] путем регулирования параметров роста или с использованием объемных кристаллов GaN, разрезанных в необходимых направлениях.

Шестикратная симметрия кристалла вюрцита в базисной плоскости диктует свою изотропию: пьезоэлектрические и упругие свойства одинаковы для любого направления в плоскости (0001). Поэтому в приведенном расчете учитывается только угол между рассматриваемой полуполярной плоскостью и базовой плоскостью. В расчете исследуемые кристаллографические направления представляются углами между направлением [0001] и нормалью роста исследуемого слоя. Соотношение c/a представляет различные значения для слоев InN и GaN, поэтому направления оси c для этих твердых растворов будут отличаться, однако для распространенных составов с КЯ $\text{In}_x\text{Ga}_{1-x}\text{N}$ рассогласование составит порядка 0.1°, поэтому данным эффектом пренебрегают.

3.1.1 Механический и пьезоэлектрический отклик напряженных нитридных слоев

Рассматриваются структуры с множественными или одиночными КЯ $\text{In}_x\text{Ga}_{1-x}\text{N}$, псевдоморфно выращенные на GaN подложках, как показано на рисунке 3.1. Для $\text{In}_x\text{Ga}_{1-x}\text{N}$ слоев при расчете параметров a_L и c_L кристаллической решетки вюрцита используется закон Вегарда:

$$a_L = x \cdot a_{\text{InN}} + (1 - x) \cdot a_{\text{GaN}}, \quad c_L = x \cdot c_{\text{InN}} + (1 - x) \cdot c_{\text{GaN}},$$

где индекс L означает материал слоя с измененным химическим составом (layer). Параметры кристаллической решетки подложки соответствуют параметрам GaN:

$$a_T = a_{\text{GaN}}, \quad c_T = c_{\text{GaN}},$$

где индекс T означает подложка (template).
Рисунок 3.1 – ориентация координатных систем, используемых при расчете [37].

Рисунок 3.2 – Изображение для определения параметров несоответствия кристаллической решетки [37].

Предполагается, что c-ось в GaN подложке наклонена на угол \(\theta \) относительно вектора нормали к поверхности подложки. Для описания состояния упругости и поляризации в слое используются две координатные системы \(xyz \) и \(x'y'z' \) (рисунок 3.2), соответственно для \(N \)- и \(P \)- систем координат (т.е. «natural» и «primed» системы координат). Ось \(z \) \(N \)-системы координат лежит в направлении [0001] кристаллической решетки, две другие \(N \)-координаты \(x \) и \(y \) лежат в плоскости (0001). В \(P \)-координатах ось \(z' \) сонаправлена с нормально подложки, две другие оси (\(x' \) и \(y' \)) лежат в плоскости подложки, причем \(x' \) совпадает с осью \(x \) – эти оси также служат осями вращения для \(c \)-оси наклона.

Псевдоморфно выращенный тонкий слой повторяет ориентацию кристаллографического направления подложки и сохраняет ее параметры решетки, что позволяет определить параметры несоответствия, отвечающие за упругость в слое. Для расчета параметров несоответствия \(\varepsilon_{m1} \) и \(\varepsilon_{m2} \) вдоль двух взаимно-перпендикулярных направлений (т.е. вдоль \(x' \) и \(y' \) осей) на интерфейсе, рассматривается схема на рисунке 3.2, где показан материал в структуре вюрцита, ограниченный кристаллографическими плоскостями с малыми индексами.
Плоскость BCD является границей между слоем и подложкой, она перпендикулярна плоскости ABO. Нормаль плоскости BCD совпадает с направлением оси z', а c-ось отклонена от нее на угол θ. Используя это взаимное расположение, могут быть получены следующие соотношения:

$$CD_T = a_T, OA_T = \sqrt{3}a_T, AB_T = \sqrt{3}a_T\tan\theta, OB_T = \frac{\sqrt{3}a_T}{\cos\theta}. \quad (3.3)$$

Теперь из соображений, что отношение AB_L в ненапряженном состоянии к AB_T пропорционально соотношению c_L/c_T, найдем те же расстояния для материала слоя (квантовой ямы):

$$AB_L = \frac{c_L}{c_T}AB_T. \quad (3.4)$$

Из соотношения (3.4) следует, что

$$CD_L = a_L, OA_L = \sqrt{3}a_L, AB_L = \frac{c_L}{c_T}\sqrt{3}a_T\tan\theta, \quad (3.5)$$

$$OB_L = \sqrt{OA_L^2 + AB_L^2} = \frac{\sqrt{3}}{c_T\cos\theta}\sqrt{(a_Lc_T)^2\cos^2\theta + (a_Tc_L)^2\sin^2\theta}. \quad (3.6)$$

Окончательно, оба параметра несоответствия определяются следующим образом:

$$\varepsilon_{m1} \equiv \frac{CD_T - CD_L}{CD_L} = \frac{a_T - a_L}{a_L}, \quad (3.7)$$

$$\varepsilon_{m2} \equiv \frac{OB_T - OB_L}{OB_L} = \frac{a_Tc_T - \sqrt{(a_Lc_T)^2\cos^2\theta + (a_Tc_L)^2\sin^2\theta}}{\sqrt{(a_Lc_T)^2\cos^2\theta + (a_Tc_L)^2\sin^2\theta}}. \quad (3.8)$$

Отметим, что параметры несоответствия, полученные из соотношений (3.7) и (3.8), не зависят от направления ориентации осей, и кроме констант кристаллической решетки и угла наклона θ в расчете нет других параметров.

3.1.2 Упругость в анизотропных рассогласованных слоях III-нитридов

Рассогласование кристаллической решетки (которое может быть количественно описано параметрами ε_{m1} и ε_{m2}) является причиной упругих напряжений в когерентно выращенных слоях на толстых подложках. В том
с случае, если толщина слоя меньше критической толщины образования дислокаций несоответствия, а подложка может рассматриваться как бесконечно толстая, рассогласования сглаживаются за счет упругости слоя. В P-системе координат, три компоненты упругости могут быть найдены из граничных условий интерфейса слой-подложка:

$$
\varepsilon'_{x'x'} = \varepsilon_{m1}, \varepsilon'_{y'y'} = \varepsilon_{m2}, \varepsilon'_{x'y'} = 0.
$$

(3.9)

Последнее соотношение в (3.9) говорит об отсутствии сдвига внутри плоскости на интерфейсе между слоем и подложкой. Остальные компоненты тензора упругости рассчитываются из компонент механической жесткости. Подробный расчет приведен в [37].

Рассматривая упруго-индуцированную поляризацию, напомним, что она возникает вследствие деформации элементарной ячейки псеевдоморфно выращенного слоя. В общем, для полуполярного роста элементарная ячейка рассматриваемого материала может быть подвергнута произвольному упругому напряжению ε_{ij}. Принимая во внимание симметрию пространственной группы $P6_3mc$ III-нитридов в системе вюрцит, пьезоэлектрическая поляризация связана с напряжениями следующим образом [74]:

$$
\mathbf{P}_{PZ} = \begin{bmatrix}
0 & 0 & 0 & 0 & e_{15} & 0 \\
0 & 0 & 0 & e_{15} & 0 & 0 \\
e_{31} & e_{31} & e_{33} & 0 & 0 & 0 \\
e_{xy} & e_{yx} & e_{xx} & 0 & 0 & 0 \\
e_{yy} & e_{y} & e_{zz} & 0 & 0 & 0 \\
e_{yz} & e_{zy} & 0 & 0 & 0 & 0 \\
e_{xz} & e_{zx} & 0 & 0 & 0 & 0 \\
e_{zx} & e_{zx} & 0 & 0 & 0 & 0 \\
e_{xx} & e_{xx} & 0 & 0 & 0 & 0 \\
e_{yy} & e_{yy} & 0 & 0 & 0 & 0 \\
e_{zz} & e_{zz} & 0 & 0 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
e_{15}\varepsilon_{xz} & e_{15}\varepsilon_{yz} \\
e_{31}(\varepsilon_{xx} + \varepsilon_{yy}) + e_{33}\varepsilon_{zz}
\end{bmatrix},
$$

(3.10)

с элементами e_{ij} пьезоэлектрического тензора в обозначениях Voigt. Любые пространственные изменения в полной поляризации \mathbf{P} ведут к образованию объемного заряда:

$$
\rho = -\nabla \cdot \mathbf{P}.
$$

(3.11)

Для ступенчатого (резкого) изменения поляризации (например на интерфейсе InGaN/GaN) уравнение (3.11) должно быть изменено так, чтобы давать фиксированную поверхностную плотность заряда

$$
q = -\mathbf{n} \cdot \Delta \mathbf{P},
$$

(3.12)
где \(n \) – нормальный к свободной поверхности или интерфейсу вектор, а \(\Delta \mathbf{P} \) – изменение полной поляризации. Фиксированный заряд \(q \) на интерфейсе InGaN/GaN вызывает появление двумерного электронного газа и изменяющегося зарядового слоя в InGaN/GaN КЯ, что обусловливает появление квантового эффекта Штарка [3, 75].

Пьезоэлектрическая компонента поляризации \(P_{PZ}^{Lz'} \) слоя, обладающая сложной зависимостью от ориентации \(\theta \), обусловленной свойством тензора деформации напряжений (strain transformation), рассчитывается из следующего соотношения:

\[
P_{PZ}^{Lz'} = e_{31} \cos \theta \varepsilon_{x'x'} + \left(e_{33} \cos^3 \theta + \frac{e_{15}}{2} \sin \theta \sin 2\theta \right) \varepsilon_{y'y'} + \left(\frac{e_{33} + e_{15}}{2} \sin \theta \sin 2\theta + e_{33} \cos^3 \theta \right) \varepsilon_{z'z'} + \left((e_{31} - e_{33}) \cos \theta \sin 2\theta + e_{15} \sin \theta \cos 2\theta \right) \varepsilon_{y'z'},
\]

где все напряжения определены в \(P \)-системе координат [37].

Спонтанная поляризация для необходимого состава и кристаллографического направления определена по закону Вегарда с параметром bowing (прогиба), равным 0.378 [1]. Интересующая нас величина спонтанной поляризации в направлении нормали к поверхности роста определена формулами:

\[
P_{SP}^{Lz'} = P_{SP}^L \cos(\theta).
\]

\[
P_{SP}^{Tz'} = P_{SP}^T \cos(\theta).
\]

Теперь, зная величину поляризации слоев и на основе данных, приведенных в главе 1, определим величину электрического поля, индуцируемого поляризацией и направленного перпендикулярно направлению роста слоев в КЯ:

\[
E_{L}^{z'} = \frac{P_{SP}^{Lz'} + P_{SP}^{Tz'} + P_{PZ}^{Lz'} + P_{PZ}^{Tz'}}{\varepsilon^L + \varepsilon^T \frac{L_L}{L_T}}
\]

и в барьере [76]:
При введенный расчет имеет следующие ограничения

- Предполагается, что интерфейсы слоев исследуемых структур являются резкими.
- Упруго-напряженные слои не релаксируют.
- Не учитывается неплоскость слоя КЯ, которая может менять результирующую величину напряженности электрического поля.
- Не учитывается изменения качества материала при его выращивании в различных кристаллографических направлениях.

3.2 Реализация алгоритма расчета электронного спектра гетероструктур с МКЯ

Для целей данной работы моделирование электронно-дырочного спектра проводится в стационарном состоянии, при этом рассчитываются не только вероятности электронно-дырочных переходов, но и вольт-фарадные характеристики при обратном смещении или, шире, при смещениях, когда можно пренебречь прямым током. Полученные концентрационные профили учитывают только распределение основных носителей заряда в слаболегированной базе, в наших исследованиях ими являются электроны. В связи с этим, проводя расчет параметров структуры методом Гуммеля (раздел 1.3.3), мы опускаем уравнения непрерывности, а также не учтываем неосновные носители заряда – дырки. Поэтому вместо системы уравнений (1.19), (1.22), (1.23) мы будем использовать только уравнение Пуассона [5, 41, 77, 78]. Поскольку в рабочей области исследуемых структур находятся квантовые ямы, поэтому для учета квантово-механических явлений совместно с уравнением Пуассона будет решаться уравнение Шредингера.

Рассмотрим для ясности основные этапы расчета.
За нуль энергии принимается дно зоны проводимости E_C в области электронейтральности гетероструктуры. Из уравнения электронейтральности определяется уровень Ферми E_F, который при приложенном обратном смещении принимаем постоянным по всей длине структуры. Далее строится одномерная расчетная сетка с дроблением (при необходимости) шага в области квантовых ям. На сетке, стартуя с некого начального распределения потенциала $\varphi_0(x)$ и концентрации $n_0(x)$, последовательно итерационно решаются уравнения Пуассона и Шредингера до сходимости по $\varphi(x)$ и $n(x)$. Локальная концентрация электронов в области квантовой ямы пропорциональна квадрату волновой функции $\psi(x)$ и определяется по 2D-статистике в соответствии с выражением [79, 80]:

$$n(x) = \frac{m^* kT}{\pi \hbar} \sum_i \ln \left[1 + \exp \left(\frac{E_F - E_i}{kT} \right) \right] |\psi_i(x)|^2. \quad (3.18)$$

Здесь m^* – эффективная масса электрона, E_i – рассчитанная энергия i-го уровня квантования, $\psi_i(x)$ – соответствующая волновая функция электрона, k – постоянная Больцмана. Суммирование проводится по всем подзонам размерного квантования. В случае структуры с несколькими квантовыми ямами найденный энергетический уровень рассматривается единым для всех ям.

Уровень Ферми в структуре с КЯ определяется, фактически, свойствами и степенью легирования широкозонного материала GaAs, квантовая яма на его положение практически не оказывает влияния. В материале n-типа положение уровня Ферми определялось из уравнения электронейтральности $N_d^+ = n$ без учета дырок, поскольку в широкозонном материале их вклад в электропроводность ничтен. Концентрация свободных электронов рассчитывалась с помощью интеграла Ферми [81, 82]

$$n(x) = N_C \frac{2}{\sqrt{\pi}} F_{1/2} \left(-\frac{E_C - E_F - e\varphi(x)}{kT} \right). \quad (3.19)$$

где N_C – эффективная плотность состояний в зоне проводимости.
Для тестовых образцов, содержащих КЯ InGaAs/GaAs (подробное описание
будет приведено в главе 4), проводилось моделирование вольт-фарадных
характеристик. Для этого совместный расчет уравнений Пуассона и Шредингера
повторялся для ряда (200–300) точек по напряжению (что соответствовало
условиям экспериментального измерения вольт-фарадных характеристик
исследуемых структур). Барьерная емкость структуры при определенном
смещении находилась на основе теоремы Гаусса в квазистатическом
приближении [5]. Далее “наблюдаемый” (apparent) профиль концентрации
основных носителей заряда получался обычным дифференцированием
рассчитанной вольт-фарадной характеристики, как это делается в случае
экспериментальной ВФХ.
Концентрационные профили, полученные из рассчитанной ВФХ,
сравнивались с экспериментально наблюдаемыми профилями основных
носителей заряда. В качестве подгоночного параметра, обеспечивающего
совпадение кривых, использовался разрыв зоны проводимости. Результат
моделирования и подгонки ВФХ и концентрационных профилей основных
носителей заряда, полученных из экспериментальной и расчетной ВФХ,
демонстрируется рисунке 4.4 Наилучшее совпадение имеет место с величинами
разрывов зоны проводимости в квантовых ямах $\Delta E_{C1} = 170$ мэВ, $\Delta E_{C2} = 128$ мэВ,
$\Delta E_{C3} = 90$ мэВ. Отметим, что рассчитанные величины с приемлемой точностью
(не хуже 10 мэВ) совпадают с полученными нами ранее значениями разрывов
зоны проводимости на серии образцов с одиночными квантовыми ямами
In$_x$Ga$_{1-x}$As/GaAs разного состава, выращенных методом эпитаксии из
металлорганических соединений (MOCVD) [83]. Эти данные использовались для
расчета профиля dna зоны проводимости в гетероструктуре и глубины залегания
уровней размерного квантования, а также для расчета распределения основных
носителей заряда по координате вглубь структуры.
3.2.1 Численное решение уравнения Шредингера

Алгоритм моделирования параметров полупроводниковой гетероструктуры предусматривает выделенную область структуры, так называемый квантовый ящик, в которой имеют место квантово-размерные эффекты. В этой области для нахождения самосогласованных значений уровней размерного квантования решается уравнение Шредингера

\[
-\frac{i\hbar^2}{2m^*} \frac{d^2}{dx^2} \psi_i(x) + U(x)\psi_i(x) = E_i\psi_i(x),
\]

а концентрация носителей заряда находится по статистике двумерной системы

\[
n(x) = \frac{m^*kT}{\pi\hbar^2} \sum_i \ln \left[1 + \exp \left(\frac{E_F - E_i}{kT} \right) \right] |\psi_i(x)|^2.
\]

Здесь \(E_i\) — собственное значение энергии, \(\psi_i\) — собственное значение волнового вектора, \(m^*\) — эффективная масса электрона и \(U(x)\) — профиль потенциальной энергии.

Уравнение Шредингера — задача на собственные числа и собственные функции (энергетические уровни и волновые функции). В работе [84] уравнение Шредингера решалось методом стрельбы, который позволяет получать искомые значения с хорошей точностью, не требуя значительных вычислительных ресурсов. Однако метод обладает плохой сходимостью сходимостью на сетках с большим количеством точек и при сложной форме моделируемого потенциала. При наличии в квантовом ящике больше одной КЯ сходимость метода резко падает, поэтому приходится либо сокращать длину самого квантового ящика, либо увеличивать шаг расчетной сетки. И то и другое приводит к потере точности, поэтому для вычисления параметров структур с МКЯ в настоящей работе использовался встроенный в пакет LabVIEW метод поиска собственных чисел и функций, основанный на решении системы однородных уравнений. Следует отметить, что платой за использование очень широкого квантового
ящика (до 500 нм) для расчета системы МКЯ явилось возрастание времени расчета.

3.2.2 Численное решение уравнения Пуассона

Уравнение Пуассона (3.22) определяет потенциал и распределение концентрации носителей заряда в p-n переходах или барьерах Шоттки:

\[\varepsilon_0 \frac{d}{dx} \left(\varepsilon(x) \frac{d\varphi(x)}{dx} \right) = -\rho(x), \]
(3.22)

где плотность заряда раскрывается так: \(\rho(x) = N_D^+(x) - n(x) \). Рассматривая n-полупроводник мы пренебрегаем концентрацией ионизованных акцепторов и дырок.

В общем случае, связь между электрическим потенциалом и зарядом в (3.22) является нелинейной. Поэтому, как указывалось в главе 1, его решение осуществляется итерационным способом. Для этого оно линеаризуется представлением потенциала в следующем виде:

\[\varphi(x) = \varphi^0(x) + \Delta \varphi(x), \]
(3.23)

где \(\varphi^0 \) – текущее значение потенциала, а \(\Delta \varphi \) – поправка для следующей итерации. Далее \(n(x) \) и \(N_D^+(x) \) раскладывались в ряд Тейлора до линейных членов относительно поправки к потенциалу:

\[N_D^+(\varphi(x)) = N_D^+(\varphi^0(x)) \frac{N_D \cdot g_D \exp \left(\frac{E_D - E_F + q \varphi^0(x)}{kT} \right)}{1 + g_D \exp \left(\frac{E_D - E_F + q \varphi^0(x)}{kT} \right)} \frac{q\Delta \varphi(x)}{kT} + ... \]
(3.24)

\[n(\varphi(x)) = n(\varphi^0(x)) \frac{N_C \cdot \exp \left(\frac{E_C - E_F - q \varphi^0(x)}{kT} \right)}{C_n + \exp \left(\frac{E_C - E_F - q \varphi^0(x)}{kT} \right)} \frac{q\Delta \varphi(x)}{kT} + ... \]
(3.25)
Вследствие того, что во всей расчетной области $\varphi<0$ (при прямом смещении $\varphi>0$ у барьера), то линейный по $\Delta \varphi(x)$ коэффициент ряда Тейлора в (3.24) будет всегда много больше, чем в (3.25), поэтому возможно пренебречь зависимостью концентрации ионизованных доноров от поправки к потенциалу. Значение C_n в выражении (3.25) в области отрицательных смещений всегда намного меньше значения экспоненты, поэтому уравнение (3.25) преобразуется к виду

$$n(\varphi(x)) = n(\varphi^0(x)) \left[1 + \frac{q\Delta \varphi(x)}{kT} \right] + ... \tag{3.26}$$

В результате уравнение Пуассона принимает следующий вид:

$$\varepsilon_n e \left(\frac{d^2 \varphi^0(x)}{dx^2} + \frac{d^2 \Delta \varphi(x)}{dx^2} \right) = -q \left[N_b^+(x) - n(x) \left(1 + \frac{q\Delta \varphi(x)}{kT} \right) \right]. \tag{3.27}$$

Как видно, для решения уравнения необходимо рассчитать зависимость концентрации от потенциала. Для этого используется классическая формула с интегралом Ферми $F_{1/2}$:

$$n(x) = N_c \frac{2}{\sqrt{\pi}} F_{1/2} \left(\frac{E_c - E_F - e\varphi(x)}{kT} \right). \tag{3.28}$$

Интеграл Ферми не считается аналитически. Зачастую для нахождения его значений используют приближения [81, 82]. В работ [5] значение концентрации электронов вычислялось с помощью следующего выражения:

$$n(x) = \frac{N_c}{C_n + \exp \left[\frac{E_c - E_F - e\varphi(x)}{kT} \right]} \tag{3.29}.$$
расчета интеграла Ферми использовалось численное интегрирование, либо аппроксимация полиномом, например вида [77]:

$$ F_{1/2}(\eta) = \frac{2\sqrt{\pi}}{3\sqrt{\pi}a^{-3/8} + 4\exp\left(-\eta\right)} $$

(3.30)

где

$$ a = \eta^4 + 33.6\eta\left(1 - 0.68 \exp(-0.17(\eta + 1)^2)\right) + 50. $$

(3.31)

Во всем диапазоне значений η точность данной интерполяции не ниже 0.4%.

Для оптимизации вычислительного процесса при моделировании параметров полупроводниковых структур в условиях высоких температур целесообразно использовать аппроксимацию полиномом, однако при необходимости вычислений в широком диапазоне температур лучше проводить расчет численным интегрированием.

3.2.3 Моделирование распределения потенциала и вольт-фарадных характеристик гетероструктур с поляризованными КЯ

На основе описанных алгоритмов создано программное обеспечение для расчета самосогласованного потенциала и концентрации основных носителей заряда. Расчет может проводиться в классическом и квантово-механическом приближениях в условиях нулевого или обратного смещения без учета обратных токов. На основе серии моделей с последовательно меняющимся напряжением программа позволяет получить зависимость емкости от напряжения, а затем, при помощи классической формулы (2.4) рассчитать «наблюдаемый» профиль носителей заряда. На рисунке 3.3 приведена часть лицевой панели программы расчета с результатами моделирования одиночной КЯ In$_{0.15}$Ga$_{0.85}$N/GaN шириной 3 нм, ориентированной в полярном направлении. В расчете учтено поляризованное состояние системы (подробнее см. раздел 3.5). В виде графиков программа визуализирует следующие параметры: напряженность электрического поля, энергия дна зоны проводимости с уровнями квантования и
уровнем Ферми, истинный концентрационный профиль носителей заряда, наблюдаемый профиль носителей заряда, полученный из C-V характеристики.

Рисунок 3.3 – Часть лицевой панели программы для расчета параметров электронного спектра и вольт-фарадных характеристик структур с МКЯ с учетом поляризации.

3.3 Результаты расчета электронного спектра и вероятностей электронно-дырочных переходов в различных ориентированных КЯ InGaN/GaN

3.3.1 Напряженность электрического поля, обусловленного поляризацией слоев гетероструктур InGaN/GaN

На основе приведенного расчета с учетом параметров постоянных решеток и компонентов тензора механической жесткости (таблица 1 главы 1) рассчитаны упругие напряжения в рассогласованных слоях на подложках GaN в зависимости от угла наклона направления роста слоев относительно направления [0001]. Величины компонент жесткости в слое In\textsubscript{x}Ga\textsubscript{1-x}N были рассчитаны с
использованием закона Вегарда для значений составов \(x = 0.05, 0.10, 0.15 \) и 0.20. Рисунок 3.4 представляет зависимость компонент тензора упругости от угла наклона оси \(c \).

Для расчета спонтанной поляризации слоя используется закон Вегарда и значения величин спонтанной поляризации для бинарных растворов InN и GaN, приведенные в таблице 1. На рисунке 3.5 (а) для наглядности приведена зависимость изменения поляризации \(\Delta P_z' \) от угла \(\theta \) в интервале 0 – 90°. Величина \(\Delta P_z' \) отвечает за накопление поверхностного заряда \(q \) и определяется по формуле:

\[
\Delta P_z' = P_{Lz}^p + (P_{L}^{SP} - P_{T}^{SP}) \cos \theta.
\] (3.32)

На том же рисунке 3.5 (б) представлена напряженность электрического поля, индуцированного поляризацией в одиночной квантовой яме In\(_x\)Ga\(_{1-x}\)N/GaN шириной 5 нм при различных составах \((x=0.05, 0.10, 0.15, 0.20, 0.25) \). Величина электрического поля рассчитана по формуле (3.16).
при котором происходит смена направления, слабо зависит от состава твердого раствора рассматриваемого слоя.

Рисунок 3.5.н – а) нормальная к слою КЯ компонента вектора поляризации в зависимости от угла ориентации слоев относительно плоскости (0001) при различных составах слоя КЯ. б) Напряженность электрического поля, индуцированного поляризацией в КЯ In$_x$Ga$_{1-x}$N/GaN ($w = 4$ нм, $b = 50$ нм, $n = 5 \cdot 10^{17}$ см$^{-3}$).

График зависимости напряженности поля от кристаллографического направления роста, также как и поляризация, меняет свой знак, что означает изменение направления наклона потенциала квантовой ямы, выращенной в полуполярных направлениях, соответствующих углам наклона до или после 43°.
Хорошо видно, что КЯ, выращенные в полуполярных плоскостях, характеризуются меньшей напряженностью поля, чем КЯ, выращенная в полярной плоскости.

3.3.2 Самосогласованный потенциал в гетероструктуре с КЯ InGaN/GaN с учетом поляризации слоев

Для нахождения самосогласованного потенциала и концентрации носителей заряда в полупроводниковых структурах на основе КЯ InGaN/GaN разработана программа численного расчета в среде LabVIEW. Ее отличием от [5] является возможность задавать значение напряженности электрического поля внутри моделируемых слоев. На рисунке 3.6 приведены энергетические профили дна зоны проводимости и потолка валентной зоны квантовых ям In$_{0.15}$Ga$_{0.85}$N/GaN шириной 5 нм, с принятой концентрацией активированной примеси в барьерах 5·1017 см$^{-3}$, рассчитанные для полярного, неполярного и полуполярного [1122] направлений. На рисунке 3.6 также нанесены рассчитанные связанные уровни электронов и первые три уровня дырок с соответствующими волновыми функциями. Отметим, что уровни квантования для дырок рассчитывались в первом приближении – для тяжелых дырок и в пренебрежении спин-орбитальным и кристаллическим расщеплением. Очевидно, что перекрытие волновых функций в полярном случае слабое, что будет количественно охарактеризовано далее. Расчет полуполярной гетероструктуры показывает значительно меньший перекос потенциала КЯ и лучшее перекрытие волновых функций электронов и дырок. Для сравнения на рисунке 3.7 приведен рассчитанный самосогласованный потенциал КЯ того же состава, выращенной в полярном направлении и имеющей ширину 2 нм.

Был проведен расчетPARAMETERS гетероструктур InGaN/GaN с одноичной квантовой ямой. Расчет проводился с изменением параметров структуры: ширина квантовой ямы – в диапазоне 2…9 нм с шагом 1 нм; рассчитывались следующие углы между направлением роста и направлением [0001]: 0, 18, 26, 29, 32, 43, 47, 58, 62, 75, 90; диапазон составов КЯ – 0.05…0.25 с шагом 0.05.
Рисунок 3.6 – Профиль энергетических зон КЯ InₓGa₁₋ₓN/GaN, уровни размерного квантования и соответствующие им волновые функции. \(w = 5 \text{ нм}, \ x = 0.15, \ n = 5 \cdot 10^{17} \text{ см}^{-3}, \ T = 300 \text{ К}, \ U = 0. \) Углы между направлением роста и направлением \([0001]\): а) 0°, б) 90°, в) 58°.
Рисунок 3.7 – Профиль энергетических зон КЯ In\textsubscript{x}Ga\textsubscript{1-x}N/GaN, уровни размерного квантования и соответствующие им волновые функции, \(w = 2 \) нм, \(x = 0.15 \), \(n = 5 \cdot 10^{17} \text{ см}^{-3} \), \(T = 300 \text{ К} \), \(U = 0 \), \(\theta = 0 \).

3.3.3 Интеграл перекрытия волновых функций электронов и дырок в гетероструктурах с КЯ InGaN/GaN

Из рассчитанных значений волновых функций для основных уровней размерного квантования электронной и дырочной подсистем численными методами вычислялась вероятность \(P_{n,n'} \) межзонных переходов электронов и дырок на основе соотношения

\[
\int \Psi_{e,n}^* (x) \Psi_{h,n'} (x) dx = P_{n,n'}. \tag{3.33}
\]

На рисунке 3.8 приведен график зависимости вероятностей переходов. Видно, что наибольшая вероятность перехода наблюдается при отсутствии поляризации. При этом кривые для всех составов неполярной структуры имеют малозаметный максимум для ширины КЯ в районе 3 – 4 нм. С увеличением ширины КЯ вплоть до 8 нм вероятность переходов не опускается ниже 0.85.
Рисунок 3.8 – Вероятность межзонных электронно-дырочных переходов в КЯ In$_x$Ga$_{1-x}$N/GaN различного состава ($x = 0.05, 0.10, 0.15, 0.20, 0.25$) в зависимости от ширины ямы. $\theta = 0^\circ, 58^\circ, 90^\circ$; $n = 5 \cdot 10^{17}$ см$^{-3}$.

Расчет вероятностей переходов для полуполярной структуры, ориентированной в направлении [1122] ($\theta = 58^\circ$) дает группу кривых для разных x. При ширине КЯ 2-3 нм вероятность переходов близка к вероятности КЯ без внутреннего поля и практически не зависит от состава. С увеличением ширины ямы наблюдается монотонное уменьшение вероятности переходов, и одновременно проявляется зависимость вероятности от состава. При этом зависимость вероятности от состава наиболее заметна при малых содержаниях In, что объясняется нелинейным ростом индуцированного поляризацией поля от состава – при относительно малом содержании In – до 0.15 поле растет гораздо быстрее, чем при больших составах.

Вероятность переходов для полярного случая ведет себя подобно полуполярному случаю. Уже при ширине КЯ $w=2$ нм значение вероятности находится ниже 0.7. С увеличением ширины ямы наблюдается быстрое снижение вероятности и при $w=8$ нм значение спадает практически до нуля. При этом в
диапазоне рассматриваемых ширин КЯ, так же как и в полуполярном случае, проявляется похожая зависимость вероятности от состава твердого раствора.

На рисунке 3.9 представлена зависимость вероятности переходов от направления роста структуры для различных значений ширины квантовой ямы.

Рисунок 3.9 – Вероятность электронно-дырочных переходов в квантовых ямах различной толщины в зависимости от угла между направлением роста и направлениями [0001] для состава КЯ $x=0.15$ и концентрации примеси в барьерах $n = 5 \cdot 10^{17}$ см$^{-3}$.

Оба рисунка наглядно демонстрируют наличие сильной зависимости вероятности переходов от ширины КЯ для структур, обладающих сильными поляризационными полями. Из графиков видно, что используя определенные полуполярные и неполярные ориентации, возможно увеличить ширину КЯ структуры более чем в два раза, без падения вероятности межзонных переходов. Например, при составе КЯ $x=0.15$ и ее ширине $w=2$ нм вероятность перехода составляет $P=0.68$ для полярной ориентации, а при том же составе КЯ шириной 5
Выводы по главе 3

1. Разработано программное обеспечение для расчета нормальной составляющей (к плоскости роста) вектора поляризации в зависимости от угла наклона нормали поверхности роста к направлению [0001]. В расчете учитывается вклад спонтанной и пьезоэлектрической составляющих поляризации. Расчет пьезоэлектрической составляющей проводится с использованием параметров несоответствия кристаллических решеток GaN и упругонапряженных слоев твердого раствора In$_x$Ga$_{1-x}$N с различным составом x.

2. Для гетероструктур InGaN/GaN количественно продемонстрировано, что при угле \sim43° между направлением роста слоев и осью [0001] происходит смена направления поляризации. Соответственно, меняет знак напряженность электрического поля внутри твердого раствора.

3. Для решения уравнения Шредингера при расчете параметров гетероструктуры, в активной области которой расположены две или более квантовых ям, требуется значительное увеличение размеров квантового ящика, что предъявляет повышенные требования к сходимости и устойчивости алгоритма расчета. В таком случае не пригоден метод стрельбы и следует воспользоваться матричными решениями системы линейных уравнений.

4. Разработано программное обеспечение для моделирования электронного спектра и вольт-фарадных характеристик в гетероструктурах InGaN/GaN с множественными квантовыми ямами с учетом поляризованного состояния слоев и в условиях приложенного смещения. Программа позволяет проводить моделирование в диапазоне температур 10…500 K.
5. Для гетероструктур с квантовыми ямами In$_x$Ga$_{1-x}$N/GaN различного состава ($x = 0.05…0.25$), толщины слоя КЯ ($w = 2…8$ нм) и ориентации кристалла ($\theta = 0^\circ…90^\circ$) проведен расчет спектров электронной и дырочной подсистем с учетом поляризованного состояния слоев.

6. Для исследуемых структур с квантовыми ямами InGaN/GaN рассчитаны вероятности межзонных электронно-дырочных переходов E_1-HH1. Показано, что при сильно поляризованном состоянии квантовой ямы (которое возникает при совпадении направления роста с направлением [0001]) вероятность переходов низка. С ростом доли индия в твердом растворе и/или увеличением ширины поляризованной КЯ вероятность переходов быстро уменьшается. Ориентирование структур в полуполярных направлениях позволяет значительно увеличить вероятность переходов. Основываясь на этом, можно предложить использование квантовых ям с увеличенной шириной при выращивании гетероструктур в полуполярных и неполярных направлениях. Ориентирование в неполярных направлениях является наиболее эффективным с точки зрения повышения вероятностей электронных переходов и повышения излучательной эффективности светодиодов. Так, вероятность переходов в КЯ шириной 2.5 нм в структуре, ориентированной в направлении [0001], составляет порядка 0.55, а при переходе к ориентации [1122] ширина КЯ может быть увеличена до 6.5 нм без снижения вероятности перехода.

7. Возможность увеличение ширины КЯ за счет снижения поляризованного состояния позволяет снизить уровень легирования барьеров без снижения заряда, накапливаемого в КЯ. Это может привести к уменьшению доли безызлучательной Оже-рекомбинации.
4. Исследования гетероструктур с квантовыми ямами InGaAs/GaAs и InGaN/GaN методами вольт-фарадного профилирования. Сопоставление экспериментальных результатов и численного расчета

Современные светоизлучающие структуры на основе III-нитридов, как правило, имеют систему МКЯ (от 3 до 10 ям) в активной области. Такая особенность является следствием небольшой ширины квантовой ямы InGaN/GaN, что делает проблемным помещение одной единственной КЯ в область с максимальной интенсивностью межзонной рекомбинации. В данной главе описаны экспериментальные исследования и результаты численных расчетов эффекта взаимодействия зарядов в соседних квантовых ямах легированной гетероструктуры, приводящие к модификации электростатического потенциала и снижению заряда электронов в промежуточной яме. Определены критерии дизайна активной области, способствующие эффективному заполнению рабочих КЯ. Исследования проводились для систем твердых растворов с МКЯ InGaAs/GaAs и InGaN/GaN. Экспериментальные исследования проводятся при помощи адmittансных, в частности, вольт-фарадных (C-V) методов.

Вольт-фарадные измерения, используемые в данной работе, являются весьма распространенным методом неразрушающего контроля полупроводниковых структур. Как упоминалось во второй главе, C-V методы требуют выполнения ряда условий для корректной интерпретации получаемых
результатов. Основное из таких условий – соблюдение режима квазистатики. В настоящей главе рассматриваются результаты измерений, проведенных при значительному отклонении от режима квазистатики. Предлагается новый подход к интерпретации получаемых неквазистатических результатов, который позволяет корректно анализировать поведение уровней размерного квантования в квантовых ямах по модификации концентрационных профилей носителей заряда в сочетании с моделированием вольт-фарадных характеристик структуры.

4.1. Исследуемые образцы с МКЯ InGaAs/GaAs

Объектами исследования являлись эпитаксиальные гетероструктуры с одной и тремя квантовыми ямами In\(_x\)Ga\(_{1-x}\)As/GaAs различного состава (рисунок 4.1), изготовленные на подложках n\(^+-\)GaAs [85].

Структуры с тремя КЯ были получены методом молекулярно-пучковой эпитаксии. Вначале при температуре 580 °C был выращен буферный слой n-GaAs толщиной 300 нм, легированный Si до 5·10\(^{18}\) см\(^{-3}\). На него осаждался слой n-GaAs толщиной 150 нм и концентрацией 3·10\(^{16}\) см\(^{-3}\). Затем осаждался 5 нм спейсер i-GaAs, на котором при температуре 530 °C была выращена 7 нм квантовая яма In\(_x\)Ga\(_{1-x}\)As состава \(x = 0.115\). Поверх КЯ опять осаждался 5 нм слой i-GaAs и барьерный слой n-GaAs толщиной 150 нм и легированием 3·10\(^{16}\) см\(^{-3}\). Далее подобным образом были выращены еще две квантовые ямы с составом \(x = 0.16\) и 0.22. Сверху осаждался покровный слой n-GaAs толщиной 400 нм с концентрацией кремния 3·10\(^{16}\) см\(^{-3}\).

Со стороны подложки был нанесен индиевый омический контакт. На верхней стороне образца для уменьшения токов утечки сформирована меза-структура диаметром 0.5 мм, на которую осаждены Au контакты Шоттки толщиной 50 нм.

Предварительно для определения рабочей области обратных смещений измерялись вольтамперные характеристики (BAX) образцов. При комнатной
температуру структура с тремя КЯ выдерживала напряжение до 15 В, однако с понижением температуры пробивное напряжение падало до 9 В, что типично для GaAs диодов и свидетельствует о лавинном характере пробоя.

Измерения вольт-фарадных характеристик образцов проводились в диапазоне температур 15…300 К и частот 10 кГц…2 МГц. Затем с помощью стандартной обработки численным дифференцированием ВФХ строились наблюдаемые (apparent) профили концентрации свободных носителей заряда по глубине структуры [5, 43, 72].

Рисунок 4.1 – схематичное изображение слоев исследуемого образца с тремя КЯ InGaAs/GaAs и энергетический профиль дна зоны проводимости.

4.2 Вольт-фарадное профилирование структур с МКЯ InGaAs/GaAs в диапазоне температур 10…300 К

Для проведения вольт-фарадных характеристик возможные пределы измерений по напряжению, как уже указывалось, были определены из вольт-амперных характеристик структур. Измерения ВФХ проводились с шагом по напряжению \(\Delta U = 0.1 \) В, по температуре \(\Delta T = 2 \) К на частотах тестового сигнала
20, 50, 100, 200, 500, 1000, 2000 кГц. Измерение каждого значения проводилось с аппаратным усреднением не менее четырех раз и с многократным программным усреднением. Измерения проводились как на криогенной зондовой станции (см. гл. 2), так и на установке измерений адmittанса в Рязанском государственном радиотехническом университете в сотрудничестве с соавторами [85].

ВФХ, измеренные при комнатной температуре, демонстрировали три плато при смещениях −3, −6 и −11 В, соответствующие последовательному пересечению границей области объемного заряда трех квантовых ям. Экспериментальные кривые при \(T = 300 \) К, измеренные на различных частотах, совпадали, что свидетельствует о квазистатическом характере измерений при комнатной температуре (рисунок 4.2). При пересчете ВФХ в координаты \(1/C^2 \) видно, что при больших напряжениях кривая начинает довольно сильно отклоняться от прямой линии (рисунок 4.3). При равномерном и одинаковом легировании барьеров структуры ВФХ в координатах \(1/C^2 – U \) график должен представлять прямую линию с характерными «ступеньками» в тех областях, где граница ООЗ сканирует КЯ, а наклон кривой должен соответствовать степени легирования барьеров. Пересчет такой ВФХ в концентрационный профиль носителей заряда дает кривую, показанную красной линией на рисунке 4.4. Хорошо видно, что показанный профиль имеет тренд экспоненциального вида.

Мы предполагаем, что отклонение ВФХ в указанных координатах от прямой линии и, как следствие, наличие тренда в профиле концентрации основных носителей заряда является следствием протекания через структуру увеличивающегося обратного тока при больших обратных смещениях. Поэтому соответствующий тренд в ВФХ был исключен из полученных экспериментальных данных.

Полученные из ВФХ концентрационные профили основных носителей заряда без тренда приведены на рисунке 4.4. Амплитуда пика от мелкой КЯ \((x = 0.115) \) всего на треть превышала уровень легирования в барьерах и прилегающих к системе КЯ кэп-слоях \((3 \cdot 10^{16} \text{ см}^{-3}) \), а пик от глубокой КЯ \((x = 0.22) \) был почти в 3 раза выше базового легирования.
Рисунок 4.2 – ВФХ структуры с тремя КЯ InGaAs/GaAs, измеренные на различных частотах тестового сигнала при температуре 300 К.

Рисунок 4.3 – Красная линия – ВФХ структуры с тремя КЯ InGaAs/GaAs, $f = 1$ МГц, $T = 300$ К. Черная линия – линейная аппроксимация ВФХ.
Рисунок 4.4 – Профили концентрации основных носителей заряда в гетероструктуре с тремя КЯ InGaAs/GaAs, $T = 300$ К. Экспериментальные данные: красная линия – до исключения тренда из ВФХ; синяя линия – после исключения тренда. Смоделированный профиль – черная линия. Принятые при расчете разрывы зоны проводимости для каждой из КЯ, $\Delta E_{C1 \ldots 3}$: 170, 128, 90 мэВ.

4.3 Эффект электростатического взаимодействия накопленных в КЯ зарядов, в гетероструктурах InGaAs/GaAs и InGaN/GaN

На примере описанных выше тестовых структур исследовался эффект электростатического взаимодействия зарядов в множественных квантовых ямах и связанное с этим изменение степени заполнения носителями заряда внутренней
КЯ, находящейся в самосогласованном потенциале прилегающих к ней квантовых ям.

Из наблюдаемых профилей концентрации электронов, рассчитанных из экспериментальных ВФХ, определялся заряд, аккумулированный в крайней \((x = 0.22) \) и средней \((x = 0.16) \) квантовых ямах, его поведение как функция температуры иллюстрируется рисунком 4.5. Видно, что средняя яма всегда содержит меньший заряд, что, очевидно, связано с ее меньшим разрывом зон по отношению к первой яме. Однако она начинает опустошаться при температурах < 160 К, в то время как опустошение крайней ямы начинается только при температуре около 100 К.

Для объяснения этого эффекта было проведено моделирование при помощи самосогласованного расчета уравнений Пуассона и Шредингера. Для акцентирования эффекта разрывы зон в квантовых ямах гипотетического образца приняты одинаковыми, а толщина барьеров и их легирование изменялись в диапазонах 80…150 нм и \(3\cdot10^{16}…1\cdot10^{17} \text{ см}^{-3} \), соответственно (рисунок 4.6). Температура менялась в широком диапазоне, соответствующем эксперименту. Для иллюстрации результаты расчета положения дна зоны проводимости и распределения концентрации электронов при нулевом смещении и при температуре 150 К для трех КЯ InGaAs/GaAs шириной 7 нм, шириной барьеров 80 нм и степенью их легирования \(3\cdot10^{16} \text{ см}^{-3} \) приведены на рисунке 4.7.

Рассчитанный концентрационный профиль демонстрирует относительно малое заполнение центральной КЯ электронами. Это объясняется влиянием накопленного заряда в крайних ямах заряда, который приводит к появлению вокруг них широких локальных областей обеднения подвижными носителями. Внешние квантовые ямы, подобно одиночной КЯ в гетероструктуре, обладают фактически неограниченным источником подвижных носителей заряда, в то время как центральная КЯ оказывается "зажатой" обедненными областями крайних КЯ. Компенсируя недостаток заряда, потенциал в области средней КЯ изгибаются и приподнимает связанный в ней уровень квантования, что снижает концентрацию электронов в подзонах квантования. Отметим, что для случая, рассмотренного на
пункte 4.6, все уровни квантования в ямах расположены выше уровня Ферми и примесь в высокой степени ионизована. Уменьшение температуры образца ведет к снижению степени ионизации примеси в барьерах, что сопровождается расширением областей обеднения вокруг каждой ямы.

Рисунок 4.5 – Температурная зависимость накопленного заряда в квантовых ямах In$_x$Ga$_{1-x}$As/GaAs (эксперимент). $x_{1QW} = 0.22$, $x_{2QW} = 0.16$, $x_{3QW} = 0.11$.

Аналогично, экспериментально наблюдаемый в исследуемом образце с тремя квантовыми ямами разного состава эффект малого заполнения средней КЯ связан с искривлением потенциала и перераспределением носителей заряда из этой ямы в крайние, что особенно явно проявляется при температурах ниже 160 К (рисунок 4.5). Заметим, что исследуемая гетероструктура имеет барьера между КЯ толщиной 150 нм, что, очевидно, исключает эффект туннелирования.

Полученные закономерности возможно распространить и на структуры на основе III-нитридов.
Рисунок 4.6 – Схематичное изображение слоев моделируемого образца с МКЯ InGaAs/GaAs и дна зоны проводимости.

Рисунок 4.7 – Рассчитанный профиль дна зоны проводимости (красный) и распределение концентрация носителей заряда (синий) моделируемой структуры с тремя КЯ InGaAs/GaAs. $T = 150\text{K}, \ n = 3 \cdot 10^{16} \text{см}^{-3}, \ L_b = 80 \text{нм}$.

Таблица:

<table>
<thead>
<tr>
<th>Итоговый слой</th>
<th>Ингредиенты</th>
<th>Интегральные</th>
<th>Толщина</th>
<th>Ширина диффузии</th>
</tr>
</thead>
<tbody>
<tr>
<td>In${0.22}$Ga${0.78}$As</td>
<td>GaAs</td>
<td>In${0.22}$Ga${0.78}$As</td>
<td>GaAs</td>
<td>In${0.22}$Ga${0.78}$As</td>
</tr>
<tr>
<td>GaAs: Si</td>
<td>$3 \cdot 10^{16} \ldots 1 \cdot 10^{17} \text{см}^{-3}$</td>
<td>GaAs: Si</td>
<td>$3 \cdot 10^{16} \ldots 1 \cdot 10^{17} \text{см}^{-3}$</td>
<td>GaAs: Si</td>
</tr>
<tr>
<td>$L_b = 80 \ldots 150 \text{нм}$</td>
</tr>
</tbody>
</table>
Экспериментальные исследования подтверждают такое предположение. Была проведена серия вольт-фарадных измерений готовых светоизлучающих структур, в активной области которых находились МКЯ InGaN/GaN. Измерения проведены с соблюдением режима квазистатичности при комнатной температуре на частотах тестового сигнала 10 кГц … 2 МГц. Полученные зависимости пересчитаны в концентрационные профили основных носителей заряда. Площадь контактов определена при помощи оптического микроскопа. Пиковая длина волны излучения определена из спектров электролюминесценции. Характеристики структур приведены в таблице 4.

На рисунках 4.8 – 4.10 приведены экспериментальные наблюдаемые концентрационные профили основных носителей заряда. Пики на профилях соответствуют накопленной концентрации свободных носителей заряда в КЯ. Из графиков видно, что амплитуда крайних пиков всегда превышает амплитуду центральных. Причем чем ближе к центру системы МКЯ находится яма, тем, как правило, меньше концентрация носителей в ней. Рассмотрим в качестве примера профиль концентрации носителей заряда, приведенный на рисунке 4.10. Ширина барьёров между ямами составляет около 25 нм, а уровень легирования барьёров порядка \(n = 5 \cdot 10^{17} \) см\(^{-3}\). Эффект электростатического взаимодействия ярко выражен.

Таблица 4

<table>
<thead>
<tr>
<th>Образец</th>
<th>Пиковая длина волны, нм</th>
<th>Концентрация активированной примеси (n), см(^{-3})</th>
<th>Количество зарегистрированных КЯ</th>
<th>Расстояние между КЯ, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>505</td>
<td>((6…8)\cdot10^{16})</td>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td>#4</td>
<td>505</td>
<td>((7…8)\cdot10^{16})</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>#8</td>
<td>525</td>
<td>((3…4)\cdot10^{17})</td>
<td>7</td>
<td>25</td>
</tr>
</tbody>
</table>
Моделирование структур с аналогичными параметрами дает похожий вид концентрационного профиля носителей заряда, показанный на рисунке 4.11. Моделирование концентрационного профиля аналогичной структуры с толщиной барьеров, увеличенной на 5 нм, и степенью легирования барьеров, увеличенной до $9 \cdot 10^{17}$ см$^{-3}$, приведенный на рисунке 4.13, показывает эффективное экранирование зарядов, накопленных в квантовых ямах. Это экранирование и определяет эффект малого заполнения центральных квантовых ям.

Рисунок 4.8 – Экспериментальный наблюдаемый концентрационный профиль светоизлучающего диода с МКЯ InGaN/GaN LED#3.
Рисунок 4.9 – Экспериментальный наблюдаемый концентрационный профиль светодиода с МКЯ InGaN/GaN LED#4.

Рисунок 4.10 – Экспериментальный наблюдаемый концентрационный профиль светодиода с МКЯ InGaN/GaN LED#8.
Рисунок 4.11 – Рассчитанный наблюдаемый концентрационный профиль светоизлучающего диода с МКЯ InGaN/GaN. Неэффективное заполнение квантовых ям. $T = 300K$.

Рисунок 4.12 – Рассчитанный наблюдаемый концентрационный профиль светоизлучающего диода с МКЯ InGaN/GaN. Эффективное заполнение квантовых ям. $T = 300K$.
Анализ взаимодействия зарядов в системе квантовых ям позволяет сформулировать следующие выводы и практические рекомендации:

Наблюдение и моделирование гетероструктур с МКЯ показывает, что при относительно низкой концентрации примеси в барьерах и/или при малой толщине барьеров накопленные в квантовых ямах заряды интенсивно взаимодействуют электростатически. Тогда может возникать ситуация неэффективного заполнения центральных КЯ.

В том случае, если максимум напряженности электрического поля при работе прибора оказывается в области такой КЯ с относительно малым заполнением носителями заряда, то общая эффективность прибора упадет.

Для эффективного заполнения КЯ носителями заряда в случае, если необходимо использование нескольких КЯ в активной области прибора, их рекомендуется располагать парами таким образом, чтобы области объемного заряда от одной пары квантовых ям не перекрывались с ООЗ другой пары.

4.4. Исследование уровней размерного квантования в МКЯ InGaAs/GaAs методами вольт-фарадного профилирования

Измерения ВФХ образца с тремя КЯ InGaAs/GaAs, описанного в разделе 4.1, при понижении температуры показывают отклонение от квазистатического режима измерений, о чем свидетельствует расхождение кривых емкости, измеренной при различных частотах на графике ВФХ (Рисунок 4.13). Отметим, что ускоренное наступление пробоя при понижении температуры не позволили достичь дальнюю – самую мелкую квантовую яму – при измерении ВФХ.
Рисунок 4.13 – ВФХ структуры с тремя КЯ InGaAs/GaAs, измеренные при различных частотах тестового сигнала при температуре 50 К.

На рисунке 4.14 приведены рассчитанные из экспериментальных ВФХ профили распределения свободных носителей заряда. Хорошо видно, что при пониженных температурах даже при частоте тестового сигнала 50 кГц наблюдается сильное смещение концентрационного профиля в глубину структуры, что еще раз свидетельствует об отклонении от квазистатического режима измерений. Стоит заметить, что концентрационный пик от глубокой ямы претерпевает большее смещение по координате с изменением частоты, чем пик от средней, более мелкой, КЯ.
Рисунок 4.14 – Экспериментальные наблюдаемые концентрационные профили основных носителей заряда в гетероструктуре с тремя КЯ InGaAs/GaAs при различных температурах и частотах.

Обработка экспериментальных данных дает картину смещения координат концентрационных пиков. На рисунке 4.15 показана зависимость координаты концентрационных пиков от температуры для первой и второй КЯ образца. С понижением температуры менее 150 К график показывает систематически увеличивающийся сдвиг положения концентрационного пика в сторону увеличения координаты.

Для объяснения сдвига наблюдаемых концентрационных пиков проводился расчет уровня Ферми (E_F) и уровней размерного (E_i) квантования в системе МКЯ в широком диапазоне температур, рисунок 4.16.
Рисунок 4.15 – Координата пика наблюдаемого в эксперименте концентрационного профиля, сформированного носителями заряда в первой и второй КЯ в зависимости от температуры.

В диапазоне высоких температур, включая комнатную, уровни размерного квантования располагаются существенно выше уровня Ферми. С понижением температуры и E_F и E_i смещаются к зоне проводимости, при этом сближаясь друг с другом. Скорость приближения уровня Ферми к дну зоны проводимости оказывается быстрее, чем уровней квантования, и, с дальнейшим охлаждением образца это приводит к последовательному пересечению уровнем Ферми уровней квантования, начиная с самого глубокого. Таким образом, уже при температуре порядка 200 К уровень Ферми оказывается выше нижнего уровня E_1 системы МКЯ, который ассоциируется с глубокой КЯ. При 100 К он превышает E_1 более чем на kT.
Рисунок 4.16 – Смещение уровня Ферми и связанных уровней в квантовых ямах In\textsubscript{x}Ga\textsubscript{1-x}As/GaAs \((x_{1\text{КЯ}} = 0.22, \ x_{2\text{КЯ}} = 0.16, \ x_{3\text{КЯ}} = 0.11)\) в зависимости от температуры, \(n = 3 \cdot 10^{16}\text{см}^{-3}\).

Рисунок 4.17 – Координата пика наблюдаемого в эксперименте концентрационного профиля (в координатах \(U(x)\)), сформированного носителями заряда в первой КЯ, от температуры.
Иными словами, при понижении температуры свойства уровней размерного квантования системы МКЯ постепенно модифицируются, приобретая характер глубоких уровней. Под глубоким уровнем при классическом подходе понимается уровень, для которого выполняется неравенство $E - E_F < 4kT$, при этом оговаривается условность деления уровней на мелкие и глубокие, поскольку положение уровня Ферми зависит от температуры [86]. Характерное для глубокого уровня запаздывание отклика при увеличении частоты в низкотемпературных измерениях ВФХ гетероструктур с МКЯ, сопутствует переходу в неквазистатический режим измерений. При этом уровень, приобретающий характер глубокого, частично выключается из процессов зарядки/перезарядки на высоких частотах, и при стабилизации величины приложенного к структуре напряжения область объемного заряда с необходимостью увеличивается за счет мгновенной ионизации мелкой примеси для выполнения теоремы Гаусса, согласно которой количество заряда в замкнутой системе связано с напряженностью электрического поля на поверхности (на барьере Шоттки) F_s соотношением:

$$
\varepsilon \varepsilon_0 \int F_s dS = Q. \quad (4.1)
$$

Наблюдающееся на рисунке 4.15 замедление сдвига положения пика наблюдаемого в эксперименте концентрационного профиля, сформированного электронами в первой (глубокой) квантовой яме, при температурах ниже 50 К, по-видимому, объясняется стабилизацией положения уровня Ферми вблизи донорного уровня. В этом диапазоне температур уровни квантования и уровень Ферми, как показывают расчеты, сдвигаются практически с одинаковой скоростью, поэтому смещение координаты концентрационного пика замедляется.
Рисунок 4.18 – ВФХ образца с МКЯ In\textsubscript{x}Ga\textsubscript{1-x}As/GaAs и ее производная, в диапазоне напряжений, соответствующему прохождению границы области объемного заряда первой КЯ $x = 0.22$ (см. рис. 4.1). (а) – $T = 40$ К; (б) – $T = 190$ К.

Как отмечалось ниже, объяснением резкого сдвига координаты от частоты является изменение ширины ООЗ с частотой. Такое утверждение, основанное на наблюдении концентрационного профиля, может быть подвергнуто сомнению вследствие неявной зависимости координаты от емкости и напряжения. Поэтому на рисунке 17 приведена зависимость положения максимума концентрационного профиля для первой КЯ, построенного в координатах $n(U)$ (концентрация vs...
напряжение). На графике видно резкое снижение напряжения, при котором наблюдается первый пик, с ~3 В до 2.8 В при увеличении частоты, что можно интерпретировать как исключение некоторых центров из процесса перезарядки и изменением ширины ООЗ в соответствии с теоремой Гаусса.

Рисунок 4.19 – Смещение уровня Ферми и связанного уровня в квантовой яме InₓGa₁₋ₓAs/GaAs (ₓ = 0.22) от температуры в структурах с различной концентрацией примеси. Сплошные линии – положение наименьшего уровня квантования Е₁, штрих-пунктирные линии – уровень Ферми. Концентрация примеси в области барьеров, n, см⁻³: 1 – 1·10¹⁶, 2 – 3·10¹⁶, 3 – 6.5·10¹⁶.

На рисунке 4.18 приведена зависимость емкости и ее производной от напряжения смещения для образца с тремя КЯ InGaAs/GaAs (раздел 4.1). Диапазон обратных смещений соответствует сканированию границей области объемного заряда глубокой КЯ. Отличие диапазона напряжений от диапазона, указанного на рисунке 4.17, обусловлено модификацией мезы на образце.

Видно, что ВФХ, измеренная при относительно высокой температуре (190 К), не имеет сдвига по напряжению, что подтверждается совпадением пиков производных. С другой стороны, аналогичная зависимость, измеренная при Т=40 К, имеет явно выраженный сдвиг в сторону низкого напряжения с увеличением
частиоты тестового сигнала. Приведенные зависимости свидетельствуют об
изменении ширины ООЗ с изменением частоты во время вольт-фарадного
профилирования в таких условиях, когда наблюдаемый уровень размерного
квантирования приобретает свойства глубокого уровня.

Положение уровней квантирования и уровня Ферми было рассчитано для
различных концентраций легирования барьеров рисунок 4.19. Повышение
концентрации примеси в барьерах, как показывает самосогласованный расчет,
ведет к смещению момента пересечения уровня Ферми и уровня квантирования в
сторону более высоких температур, рисунок 4.19. Так, в исследовавшихся нами
ранее в [59] образцах с концентрацией доноров \(N_D = 6.5 \cdot 10^{16} \text{ см}^{-3} \) и близким
составом квантовой ямы In_{0.225}Ga_{0.775}As/GaAs точка пересечения уровня Ферми и
уровня квантирования – примерно 265 К. Строго говоря, температура,
соответствующая совпадению уровня Ферми и уровня квантирования, означает
предел квазистатичных вольт-фарадных измерений. При более низких
температурах нужно принимать во внимание запаздывание процессов захвата
эмиссии, что обычно характеризуется в динамической спектроскопии адмиттанса
соотношением между скоростью эмиссии носителя заряда с рассматриваемого
центра \(e_n \) и частотой тестового сигнала измерителя адмиттанса \(\omega \).
Скорость эмиссии зависит от температуры наблюдения (внешних условий) и от энергии
активации уровня \(E_a \) (его физической природы):

\[
e_n = A \exp \left(-\frac{E_a}{kT} \right),
\]

(4.2)

и может изменяться более чем на 10 порядков. Частота \(\omega \) в современных RLC-
метрах также варьируется в широких пределах (4 порядка и более) [46]. То есть,
современное вольт-фарадное профилирование регулярно ставит
экспериментатора в ситуацию нарушения условий квазистатичности измерений,
лежащей в основе практики ВФХ [5, 43], особенно при низкой температуре или
высокой частоте измерений.

Положение усугубляется в случае широкозонных материалов, которые
являются основой оптоэлектроники (соединения типа A^3N), поскольку в них, как
правило, основная легирующая примесь является глубокой даже при комнатной температуре.

4.5 Вольт-фарадные исследования гетероструктур InGaN/GaN. Асимметрия наблюдаемых концентрационных профилей основных носителей заряда, порождаемая поляризацией

4.5.1 Вольт-фарадная характеристика двойных гетероструктур GaN/InGaN/GaN

Моделировались вольт-фарадные характеристики ДГС In$_x$Ga$_{1-x}$N/GaN, экспериментально исследованные авторами [87]. Образцы представляли собой гетероструктуры GaN/In$_{0.05}$Ga$_{0.95}$N/GaN и GaN/In$_{0.09}$Ga$_{0.91}$N/GaN с толщинами слоев тройного раствора 30 и 50 нм, соответственно. Структуры были выращены методом МПЭ, последовательность слоев приведена на рисунке 4.20.

Концентрационные профили получены из вольт-фарадной характеристики при помощи стандартных формул (2.4) и (2.5) для квазистатического приближения. В рассматриваемой статье приведен экспериментальный концентрационный профиль носителей заряда для структуры GaN/In$_{0.09}$Ga$_{0.91}$N/GaN с толщиной слоя l=50 нм, измеренный при частотах тестового сигнала 100, 450 и 800 кГц [87] при комнатной температуре.
Рисунок 4.20 – Схематическое изображение эпитаксиальных слоев гетероструктуры GaN/InGaN/GaN [87].

Нами проведено моделирование наблюдаемого концентрационного профиля данной гетероструктуры. Для моделирования использовались параметры, приведенные в таблице 5. Значение поверхностной плотности заряда, полученное авторами [87], составляет \((4.38 \pm 0.36) \cdot 10^{12} \text{ e}/\text{см}^2\) что соответствует напряженности поля \(8.34 \cdot 10^7 \text{ В}/\text{м}\). Напряженность электрического поля, полученная нами, составляет \(8.02 \cdot 10^7 \text{ В}/\text{м}\), что показывает хорошее совпадение результатов. Однако принятый в нашем моделировании разрыв зоны проводимости, рассчитанный из свежих литературных данных [88] и составляющий для гетероинтерфейса In_{0.09}Ga_{0.91}N/GaN 306 мэВ, расходится со значением \(\Delta E_C = 220 \pm 50 \text{ эВ}\), которое предлагалось в [87].
Параметры слоев In$_{0.09}$Ga$_{0.91}$N/GaN, используемые при расчете

<table>
<thead>
<tr>
<th></th>
<th>GaN</th>
<th>In${0.05}$Ga${0.95}$N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Разрыв зоны проводимости, мэВ</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Напряженность электрического поля, обусловленная поляризованным состоянием, B/m</td>
<td>8.02 \cdot 10^7</td>
<td></td>
</tr>
<tr>
<td>Эффективная масса электрона</td>
<td>0.200</td>
<td>0.191</td>
</tr>
<tr>
<td>Уровень легирования, см$^{-3}$</td>
<td>10^{17}</td>
<td></td>
</tr>
<tr>
<td>Диэлектрическая проницаемость</td>
<td>8.90</td>
<td>9.48</td>
</tr>
<tr>
<td>Глубина залегания примеси, мэВ</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Расчет наблюдаемого профиля концентрации основных носителей заряда наложен на экспериментальные результаты вольт-фарадного профилирования на рисунке 4.21 и представлен зеленой линией. Отметим, что экспериментальный концентрационный профиль значительно уширен относительно рассчитанного, что сложно объяснить, исходя из данных, предоставленных авторами эксперимента. Дело в том, что сильное поляризованное состояние в рассматриваемой гетероструктуре вызывает значительный перекос зон с образованием тонкой КЯ на интерфейсе GaN/InGaN, ближайшем к барьеру Шоттки. Использование меньшего значения разрыва зон, предоставляемое авторами статьи, качественно не меняет ситуацию. На втором гетеропереходе поляризованное состояние создает широкую область обеднения, занимающую практически всю ширину слоя InGaN и проходящую дальше в слой GaN. Диапазон, в котором построен экспериментальный график профиля концентрации заряда с обеих сторон, не выходит за пределы областей обеднения носителями заряда первого и второго гетеропереходов. Этот факт значительно осложняет проведение расчета данной структуры, так как выход наблюдаемого профиля на горизонтальную линию в областях электронейтральности с хорошей точностью
может предоставить информацию о степени легирования структуры для последующего расчета.

Моделирование энергии дна зоны проводимости показывает, что поляризованное состояние на первом гетероинтерфейсе приводит к тому, что дно зоны проводимости первого слоя GaN практически не изгибается на участке, предшествующем КЯ. Это означает, что концентрация на левом «хвосте» профиля на рисунке 4.21 может быть близка по значению к уровню легирования структуры.

Рисунок 4.21 – Концентрационный профиль носителей заряда в двойной гетероструктуре GaN/In_{0.09}Ga_{0.91}N/GaN, полученный из экспериментальных вольт-фараадных характеристик при комнатной температуре на трех частотах тестового сигнала (точки) [Hurni]. Рассчитанный в настоящей работе наблюдаемый профиль носителей заряда в этой гетероструктуре (сплошная линия).

Сильное рассогласование демонстрируемой в области обеднения концентрации может быть следствием неоднородного легирования слоев.

В статье Кремера и др. [89] со ссылкой на [87] исследуется аналогичная рассмотренной модельная структура. Приведен расчет дна зоны проводимости,
потолка валентной зоны и наблюдаемого концентрационного профиля носителей заряда. Моделируемая структура состоит из трех слоев GaN/In_{0.05}Ga_{0.95}N/GaN с толщинами 100/100/50 нм, соответственно. У толстого слоя GaN предполагается наличие контакта Шоттки со встроенным потенциалом величиной 0.6 В. Предполагается, что все слои равномерно легированы кремнием с концентрацией \(N_D = 10^{18} \text{ см}^{-3} \). Глубина залегания Si в GaN принимается \(E_D = 15 \text{ мэВ} \). При моделировании, предполагается, что ширина запрещенной зоны GaN имеет значение 3.4 эВ, а In_{0.05}Ga_{0.95}N – 3.2 эВ, при этом разрыв зоны проводимости принимается \(\Delta E_C = 120 \text{ мэВ} \). Заряд на интерфейсе InGaN/GaN, обусловленный поляризацией, принят \(|\sigma_1/e| = 4.67 \times 10^{12} \text{ см}^{-2} \). Остальные параметры структуры, необходимые для моделирования и не указанные в статье, рассчитаны нами из литературных данных главы 1 (см. таблицу 6).

Таблица 6

<table>
<thead>
<tr>
<th>Параметры слоев GaN/In_{0.05}Ga_{0.95}N, используемые при расчете</th>
<th>GaN</th>
<th>In_{0.05}Ga_{0.95}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ширина запрещенной зоны, эВ</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Разрыв зоны проводимости, мэВ</td>
<td>-120</td>
<td></td>
</tr>
<tr>
<td>Заряд на интерфейсе, см^{-2}</td>
<td></td>
<td>4.67 \times 10^{12}</td>
</tr>
<tr>
<td>Эффективная масса электрона</td>
<td>0.200</td>
<td>0.195</td>
</tr>
<tr>
<td>Уровень легирования, см^{-3}</td>
<td>10^{18}</td>
<td></td>
</tr>
<tr>
<td>Диэлектрическая проницаемость</td>
<td>8.90</td>
<td>9.22</td>
</tr>
<tr>
<td>Глубина залегания примеси, мэВ</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

На рисунке 4.22 показана энергетическая диаграмма структуры n-GaN/n-In_{0.05}Ga_{0.95}N/n-GaN. Линиями синего цвета отображены энергии краев зон, предложенные в статье [89], а зелеными – энергия, рассчитанная в данной работе. Результаты близки, однако наблюдается незначительное расхождение. Причин расхождения может быть несколько. Во-первых, использование различных значений параметров моделируемой структуры (в статье не указаны значения используемых эффективных масс электронов и диэлектрических проницаемостей...
сред). Во-вторых, может отличаться точность принятых в расчете приближений (Больцмана или Ферми-Дирака) и условий расчета (шаг сетки).

Рисунок 4.22 — а) Энергетическая диаграмма слоев GaN/In$_{0.05}$Ga$_{0.95}$N/GaN с толщинами 100/100/50 нм, соответственно. б) Моделируемый наблюдаемый профиль концентрации основных носителей заряда в гетероструктуре. Синие линии — расчет [89], зеленые линии — расчет, проведенный в рамках данной работы.

На основе самосогласованного решения уравнений Пуассона и Шредингера проведено моделирование наблюдаемого концентрационного профиля свободных носителей заряда. Расчет проведен на сетке с шагом 2 Å. Концентрация примеси
задана равной $N_D = 10^{18}$ см$^{-3}$ для всех слоев. Моделирование ВФХ проводилось с шагом по напряжению $dV=0.1$ В. Перечисленные параметры соответствуют используемым в [89]. Результат расчета и сравнение с результатом [89] приведен на рисунке 4.22. Наблюдается хорошее совпадение рассчитанных профилей концентрации носителей заряда. Небольшие расхождения могут быть связаны с теми же причинами, которыми объясняется и несовпадение энергетических диаграм.

4.5.2 Моделирование вольт-фарадных характеристик гетероструктур с КЯ InGaN/GaN

Нами был проведен цикл моделирования вольт-фарадных характеристик гипотетических структур с квантовой ямой In$_x$Ga$_{1-x}$N/GaN трех составов ($x = 0.05$, 0.10, 0.15). Моделируемые структуры состояли из двух слоев GaN толщиной по 100 нм и слоя КЯ толщиной 3 нм. Все слои n-типа проводимости, дырки в расчете не учитывались. Для каждого состава рассматривались структуры, ориентированные в полярном, полуполярном [1011] и неполярном направлениях. Параметры, использованные при моделировании, приведены в таблице 7.

Для гетероструктур проведен расчет дна зоны проводимости и вольт-фарадной характеристики, на основе которой построен наблюдаемый концентрационный профиль носителей заряда. Моделирование осуществлялось на расчетной сетке с шагом 2 Å и с шириной квантового ящика 400 точек, что позволило охватить КЯ вместе с областью обеднения вокруг нее. Моделирование вольт-фарадной характеристики проходило с учетом встроенных пьезополей в диапазоне обратных напряжений -0…-12 В с шагом 0.02 В.

На рисунке 4.23 показаны результаты моделирования. Профиль дна зоны проводимости, рассчитанный для структуры, ориентированной в неполярном направлении, показывает симметричную КЯ, по краям которой находятся потенциальные барьеры, соответствующие областям обеднения основными носителями заряда.
Таблица 7

Параметры слоев \(\text{In}_{0.05}\text{Ga}_{0.95}\text{N}/\text{GaN} \), используемые при расчете

<table>
<thead>
<tr>
<th>Параметр</th>
<th>GaN</th>
<th>(\text{In}{0.05}\text{Ga}{0.95}\text{N})</th>
<th>(\text{In}{0.10}\text{Ga}{0.90}\text{N})</th>
<th>(\text{In}{0.15}\text{Ga}{0.85}\text{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Разрыв зоны проводимости, мэВ</td>
<td>-172</td>
<td>-338</td>
<td>-497</td>
<td></td>
</tr>
<tr>
<td>Напряженность встроенного поля в КЯ, В/м</td>
<td>4.57 \cdot 10^7</td>
<td>8.86 \cdot 10^7</td>
<td>1.29 \cdot 10^8</td>
<td></td>
</tr>
<tr>
<td>Эффективная масса электрона</td>
<td>0.200</td>
<td>0.195</td>
<td>0.190</td>
<td>0.185</td>
</tr>
<tr>
<td>Уровень легирования, см(^{-3})</td>
<td>5 \cdot 10^{17}</td>
<td>1 \cdot 10^{14}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диэлектрическая проницаемость</td>
<td>8.90</td>
<td>9.22</td>
<td>9.54</td>
<td>9.86</td>
</tr>
<tr>
<td>Глубина залегания примеси, мэВ</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Энергетический профиль дна зоны проводимости КЯ, ориентированной в полярном направлении, имеет сильный перекос, который выражается в том, что с одной стороны ямы, где за счет поляризованного состояния на интерфейсе GaN/InGaN накоплен положительный заряд, отсутствует характерный потенциальный барьер и, соответственно, область обеднения. С другой стороны ямы, где за счет поляризованного состояния на интерфейсе InGaN/GaN присутствует отрицательный заряд, образуется большой потенциальный барьер, и следовательно, обширная область обеднения.
Рисунок 4.23 – Рассчитанный наблюдаемый профиль носителей заряда (а) и рассчитанный профиль дна зоны проводимости (б) в гетероструктуре с КЯ In$_{0.05}$Ga$_{0.95}$N/GaN для полярной, полуполярной и неполярной кристаллографических ориентаций.

Несимметричный энергетический профиль полярной гетероструктуры имеет результатом сильную асимметрию наблюдаемого концентрационного профиля носителей заряда. В соответствии с модификацией энергии дна зоны проводимости, наблюдаемый концентрационный профиль носителей заряда КЯ,
находящейся в поляризованном состоянии, демонстрирует отсутствие обеднения с одной стороны КЯ и расширенную обедненную область – с другой. Как видно из рисунка 4.24, при вольт-фарадном профилировании КЯ в поляризованном состоянии концентрационный профиль смешается в сторону перекоса энергетического профиля КЯ. Однако, вследствие малой ширины КЯ смещение профиля концентрации не превышает половины толщины ямы, поэтому можно сделать вывод о том, что при профилировании КЯ InGaN/GaN судить о присутствии поляризованного состояния можно прежде всего по форме областей обеднения вокруг КЯ, а сдвиг концентрационного профиля тонкой квантовой ямы является малоинформативным.

Гетероструктура, находящаяся в полуполярном состоянии, имеет наблюдаемый концентрационный профиль носителей заряда, схожий с профилем неполярного образца, хотя профиль энергии дна зоны проводимости имеет противоположный перекос. В связи с этим встает вопрос о зависимости результата вольт-фарадного профилирования от направления распространения расширяющейся ООЗ или от направления пьезоэлектрического поля. Этот вопрос будет рассмотрен далее.

На рисунке 4.24 представлено дно зоны проводимости для гетероструктур с составами x = 0.05, 0.10 и 0.15. Рост содержания InN ведет к увеличению разрыва зоны проводимости и, как следствие к большей концентрации носителей заряда в КЯ. При этом появляется ярко выраженная область обеднения на первом гетеропереходе, и увеличивается протяженность области обеднения второго гетероперехода, несмотря на рост напряженности электрического поля, обусловленного поляризованным состоянием.

Проводился численный эксперимент по вольт-фарадному профилированию описанной выше структуры с КЯ In\textsubscript{0.05}Ga\textsubscript{0.95}N/GaN. Было проведено два типа исследований. В первом случае барьер Шоттки был расположен со стороны положительно заряженной плоскости поляризации, а во втором – со стороны отрицательно заряженной.
Рисунок 4.24 – Рассчитанный наблюдаемый профиль носителей заряда (а) и рассчитанный профиль дна зоны проводимости (б) в гетероструктуре с КЯ In$_x$Ga$_{1-x}$N/GaN для составов $x = 0.05, 0.10, 0.15$.
Рисунок 4.25 Моделируемые наблюдаемые концентрационные профили носителей заряда в структуре с КЯ In0.05Ga0.95N/GaN, полученные при сканировании со стороны отрицательного (сплошная линия) и положительного (пунктирная линия) интерфейсов (а). Рассчитанный профиль дна зоны проводимости (б).
Таким образом, сканирование границей области объемного заряда начиналось либо с одной, либо с другой стороны от КЯ. Энергетическая диаграмма КЯ и полученные наблюдаемые профили концентрации основных носителей заряда показаны на рисунке 4.25. Наблюдаемые концентрационные профили носителей заряда оцениваются существенно различными. В том случае, когда профилирование осуществляется со стороны положительно заряженного поляризованым состоянием интерфейса, наблюдается ярко выраженная асимметрия профиля – область обеднения очень мала по сравнению с областью обеднения, расположенной со стороны отрицательно заряженного интерфейса.

Профилирование со стороны отрицательно заряженного интерфейса не дает столь сильного искажения концентрационного профиля, делая его по форме близким к профилю КЯ в неполярном состоянии. Стоит отметить, что амплитуды концентрационных профилей при сканирующих проходах с разных сторон значительно отличаются.

Наблюдаемое отличие концентрационных профилей объясняется, прежде всего, действием высокого потенциального барьера на отрицательно заряженном интерфейсе. Этот барьер при вольт-фарадном сканировании задерживает электроны, выдавливаемые внешним полем со стороны контакта Шоттки. Задержанные электроны, в свою очередь, препятствуют появлению области объемного заряда перед КЯ.

Интерпретация выводов, полученных при проведении численного эксперимента, применима для анализа вольт-фарадного профилирования полуполярных гетероструктур с различным направлением вектора поляризации. Иными словами, вольт-фарадное профилирование двух аналогичных образцов, выращенных в различных кристаллографических направлениях и имеющих близкие по величине, но разные по направлениям встроенные электрические поля, будет показывать сильно отличающиеся, не являющиеся зеркально симметричными, концентрационные профили носителей заряда.
Выводы по главе 4:

1. Методами вольт-фарадных характеристик в широком диапазоне температур исследованы гетероструктуры с тремя туннельно-нечисленными квантовыми ямами InGaAs/GaAs различного состава. Проведена обработка измерений, в ходе которой исключен тренд, обусловленный токами утечки при обратных напряжениях более -8В, и построены концентрационные профили носителей заряда.

2. С помощью подгонки моделируемого концентрационного профиля к экспериментальному определены разрывы зон для трех КЯ исследуемого образца ($\Delta E_{C1...3}$: 170, 128, 90 мэВ). Рассчитан энергетический профиль дна зоны проводимости.

3. Интегрированием наблюдаемых концентрационных профилей основных носителей заряда по координате рассчитан накопленный в квантовых ямах заряд и построены зависимости накопленного заряда от температуры. При падении температуры до определённого значения заряд в КЯ начинает уменьшаться. Обнаружено, что центральная КЯ начинает опустошаться при более высокой температуре, чем крайние.

4. В ходе анализа температурной зависимости количества накопленного в системе квантовых ям заряда проведено моделирование гипотетической структуры, аналогичной исследуемой, но с одинаковым составом КЯ. Ширина барьеров и концентрация легирующей примеси в ходе моделирования изменялись в диапазонах 80...150 нм и $3 \cdot 10^{16}...3 \cdot 10^{17}$ см$^{-3}$, соответственно. Моделирование проводилось для широкого диапазона температур. Расчет показал, что взаимодействие зарядов в туннельно несвязанных КЯ усиливается при уменьшении концентрации легирующей примеси или уменьшении ширины барьеров и слабо зависит от температуры. Наблюдаемое электростатическое взаимодействие выражается в малом (неэффективном с точки зрения работы прибора) заполнение центральных
КЯ системы МКЯ. Проявление данного эффекта не зависит от наличия или отсутствия поляризационных эффектов в слоях структуры, что подтверждается нашими экспериментальными исследованиями готовых светоизлучающих гетероструктур InGaN/GaN с МКЯ.

5. Даны рекомендации по дизайну активной области светоизлучающих структур, позволяющие реализовать оптимальное заполнение КЯ. В том случае, если необходимо использование в активной области светоизлучающего прибора нескольких КЯ, следует размещать их парами. Область объемного заряда от одной пары КЯ не должна перекрываться с областью объемного заряда другой пары.

6. С изменением температуры 70…50 К концентрационный профиль носителей заряда, полученный из экспериментальных вольт-фарадных характеристик гетероструктур с КЯ InGaAs/GaAs, показал сдвиг пика, соответствующего КЯ с составом $x = 0.22$ на 40 нм при частоте 2 МГц.

7. В ходе анализа поведения концентрационного профиля при низких температурах проведен расчет положения уровней размерного квантования и уровня Ферми в зависимости от температуры. Показано, что уровень Ферми превышает первый уровень размерного квантования (ассоциируемый с КЯ с составом $x = 0.22$) на $3/2 kT$ при температуре 70 К; ниже этой температуры уровень квантования начинает приобретать характер глубокого уровня при высоких частотах тестового сигнала. В таком случае время эмиссии электронов с уровня размерного квантования не является пренебрежимо малой величиной по сравнению с полуpériодом вынуждающего сигнала. Это приводит к зависимости ширины ООЗ от частоты. Данное поведение уровней размерного квантования приводит к нарушению приближения квазистатики, которое лежит в основе традиционной интерпретации C-V характеристик, это необходимо учитывать при проведении вольт-фарадных исследований.

8. Проведено моделирование концентрационного профиля свободных носителей заряда в двойной гетероструктуре GaN/In$_{0.09}$Ga$_{0.91}$N/GaN, выращенной в направлении [0001] и экспериментально исследованной в [87].
Моделирование показало некоторое расхождение с экспериментом, что объясняется возможным различием параметров экспериментальной и реальной структур.

9. На основе самосогласованного решения уравнений Пуассона и Шредингера проведен расчет зонной диаграммы модельного образца с двойной гетероструктурой GaN/In_{0.05}Ga_{0.95}N/GaN, выращенного в направлении [0001]. Проведено моделирование наблюдаемого профиля свободных носителей заряда по структуре. Расчеты показывают хорошее согласование с результатами аналогичных исследований [89].

10. Проведено численное моделирование вольт-фарадных характеристик полупроводниковых гетероструктур с КЯ InGaN/GaN шириной 3 нм, ориентированных в полярном, неполярном и полуполярном направлениях. Проанализирована эволюция наблюдаемого концентрационного профиля носителей заряда и положения дна зоны проводимости с изменением кристаллографической ориентации структуры.

11. Выявлена особенность вольт-фарадного профилирования полуполярных структур с КЯ, заключающаяся в том, что при инверсии направлении вектора поляризации в КЯ вид полученных концентрационных профилей носителей заряда не является зеркально симметричным. Этот факт необходимо учитывать при проектировании полупроводниковых гетероструктур, а также при их исследовании методами спектроскопии адmittанса.

Заключение

В работе рассмотрены условия возникновения спонтанного и пьезоэлектрического поляризованых состояний в слоях гетероструктур InGaN/GaN и негативное влияние такого состояния на работу светоизлучающих приборов. По литературным источникам выявлено, что выращивание структур на основе III-нитридов в различных кристаллографических направлениях является наиболее эффективным способом устранения нежелательных встроенных полей.
Для расчета напряженности встроенных электрических полей, обусловленных спонтанной и пьезоэлектрической поляризацией, создано программное обеспечение, позволяющее проводить расчет нормальной составляющей напряженности электрического поля в упругонапряженных слоях твердых растворов и барьерах InGaN/GaN в зависимости от состава раствора и кристалло графического направления роста слоев.

Экспериментальные исследования гетероструктур проводились методами вольт-фарадных характеристик. В качестве основного измерительного комплекса использовалась модернизированная в рамках данной работы автоматизированная установка адmittансной спектроскопии.

Расширение аналитических возможностей методик спектроскопии адmittанса достигнуто за счет совместного использования экспериментальных методов и методов моделирования. Создано программное обеспечение для моделирования дна зоны проводимости структур с МКЯ с учетом поляризованного состояния слоев. Программа позволяет рассчитывать вольт-фарадные характеристики и наблюдаемый концентрационный профиль основных носителей заряда.

Проведено моделирование профиля дна зоны проводимости и потолка валентной зоны для гетероструктур с квантовыми ямами InGaN/GaN различного состава, толщины слоя КЯ и кристаллографической ориентации кристалла. Полученные энергетические профили использованы для расчета вероятностей межзонных переходов E1-NH1, на основе которых, показаны преимущества роста структур в неполярных и полуполярных кристаллографических направлениях.

Проведены комплексные вольт-фарадные исследования гетероструктур с тремя КЯ различного состава In\textsubscript{x}xGa\textsubscript{1-x}As/GaAs (\(x_{\text{КЯ1}}=0.22\), \(x_{\text{КЯ2}}=0.16\), \(x_{\text{КЯ3}}=0.11\)) в диапазоне температур 10…300 К и частот тестового сигнала 20 кГц … 2 МГц. Для исчерпывающего анализа полученных данных проведен расчет электронного спектра исследуемых структур.

Показано, что в системе множественных квантовых ям, в том числе и туннельно несвязанных, существует сильное электростатическое взаимодействие
зарядов, имеющее следствием неэффективное заполнение центральных КЯ. Эффект усиливается при уменьшении концентрации легирующей примеси или уменьшении ширины барьеров и, как показано, слабо зависит от температуры. Наличие эффекта не зависит от присутствия поляризованного состояния в слоях и проявляется в гетероструктурах на основе III-нитридов, что подтверждено экспериментально.

Концентрационный профиль свободных носителей заряда, полученный из неквазистатических вольт-фардных измерений образцов с КЯ InGaAs/GaAs показывает сильный сдвиг пика глубокой КЯ (х=0.22) по координате с понижением температуры. Детальное изучение поведения концентрационного профиля и поведения рассчитанных уровней размерного квантования и уровня Ферми с изменением температуры показывает, что модификация профиля происходит вследствие изменения характера уровня квантования из мелкого в глубокий.

Проведено моделирование вольт-фардных характеристик реальных и тестовых двойных гетероструктур и КЯ InGaN/GaN. Показано, что при инверсии направления вектора встроенного электрического поля в КЯ имеет место сильная асимметрия наблюдаемых концентрационных профилей основных носителей заряда, что может быть использовано для количественного анализа встроенных в гетероструктуру полей методом ВФХ.
Список условных обозначений

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, c</td>
<td>Постоянная кристаллической решетки</td>
</tr>
<tr>
<td>c</td>
<td>Полярная ось в AlN</td>
</tr>
<tr>
<td>C</td>
<td>Барьерная емкость полупроводника</td>
</tr>
<tr>
<td>C_{ij}</td>
<td>Константы упругости</td>
</tr>
<tr>
<td>D</td>
<td>Вектор индукции электрического поля</td>
</tr>
<tr>
<td>d_{ij}</td>
<td>Пьезоэлектрические модули</td>
</tr>
<tr>
<td>E</td>
<td>Вектор напряженности электрического поля</td>
</tr>
<tr>
<td>E_a</td>
<td>Энергия активации носителей заряда</td>
</tr>
<tr>
<td>E_C</td>
<td>Энергия дна зоны проводимости</td>
</tr>
<tr>
<td>ΔE_C</td>
<td>Величина разрыва зоны проводимости</td>
</tr>
<tr>
<td>E_d</td>
<td>Глубина залегания донорной примеси</td>
</tr>
<tr>
<td>E_F</td>
<td>Энергия уровня Ферми</td>
</tr>
<tr>
<td>E_g</td>
<td>Ширина запрещенной зоны полупроводника</td>
</tr>
<tr>
<td>E_i</td>
<td>Энергия уровня квантования</td>
</tr>
<tr>
<td>E_V</td>
<td>Энергия потолка валентной зоны</td>
</tr>
<tr>
<td>ΔE_V</td>
<td>Величина разрыва валентной зоны</td>
</tr>
<tr>
<td>e</td>
<td>Заряд электрона</td>
</tr>
<tr>
<td>e_n</td>
<td>Скорость эмиссии электрона</td>
</tr>
<tr>
<td>e_{ij}</td>
<td>Составляющие пьезоэлектрического тензора</td>
</tr>
<tr>
<td>G</td>
<td>Активная проводимость полупроводниковой структуры</td>
</tr>
<tr>
<td>\hbar</td>
<td>Постоянная Планка</td>
</tr>
<tr>
<td>J</td>
<td>Вектор плотности тока</td>
</tr>
<tr>
<td>k</td>
<td>Постоянная Больцмана</td>
</tr>
<tr>
<td>L_D</td>
<td>Дебаевская длина экранирования</td>
</tr>
<tr>
<td>m^*</td>
<td>Эффективная масса электрона в полупроводнике</td>
</tr>
<tr>
<td>n</td>
<td>Концентрация свободных электронов</td>
</tr>
<tr>
<td>N_a</td>
<td>Концентрация акceptorов</td>
</tr>
<tr>
<td>Symbol</td>
<td>Russian Term</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>N_C</td>
<td>Эффективная плотность состояний в зоне проводимости</td>
</tr>
<tr>
<td>N_d</td>
<td>Концентрация доноров</td>
</tr>
<tr>
<td>N_a</td>
<td>Концентрация акцепторов</td>
</tr>
<tr>
<td>N_{d^+}</td>
<td>Концентрация ионизованных доноров</td>
</tr>
<tr>
<td>N_T</td>
<td>Концентрация глубоких ловушек</td>
</tr>
<tr>
<td>p</td>
<td>Концентрация дырок</td>
</tr>
<tr>
<td>P</td>
<td>Вектор поляризации</td>
</tr>
<tr>
<td>P_{SP}</td>
<td>Вектор спонтанной поляризации</td>
</tr>
<tr>
<td>P_{PZ}</td>
<td>Вектор пьезоэлектрической поляризации</td>
</tr>
<tr>
<td>r</td>
<td>Радиус-Вектор координаты</td>
</tr>
<tr>
<td>S</td>
<td>Площадь p-n перехода или контакта Шоттки</td>
</tr>
<tr>
<td>T</td>
<td>Абсолютная температура</td>
</tr>
<tr>
<td>U</td>
<td>Потенциальная энергия</td>
</tr>
<tr>
<td>Y</td>
<td>Вектор полной проводимости</td>
</tr>
<tr>
<td>w</td>
<td>Ширина области объемного заряда полупроводника</td>
</tr>
<tr>
<td>ρ</td>
<td>Плотность объемного заряда</td>
</tr>
<tr>
<td>φ</td>
<td>Электростатический потенциал</td>
</tr>
<tr>
<td>ε_0</td>
<td>Диэлектрическая проницаемость вакуума</td>
</tr>
<tr>
<td>ε</td>
<td>Статическая диэлектрическая проницаемость</td>
</tr>
<tr>
<td>ε_m</td>
<td>Параметр несоответствия кристаллической решетки</td>
</tr>
<tr>
<td>ε_{ij}</td>
<td>Компоненты тензора упругости</td>
</tr>
<tr>
<td>μ</td>
<td>Подвижность носителей заряда</td>
</tr>
<tr>
<td>σ</td>
<td>Поверхностная плотность заряда на гетеропереходе</td>
</tr>
<tr>
<td>ψ</td>
<td>Волновая функция электрона</td>
</tr>
<tr>
<td>ω</td>
<td>Круговая частота</td>
</tr>
<tr>
<td>ВФХ</td>
<td>Вольт-фарадная характеристика</td>
</tr>
<tr>
<td>КЯ</td>
<td>Квантовая яма</td>
</tr>
</tbody>
</table>
Список литературы

[22] Lawniczak-Jablonska K. Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory / Lawniczak-Jablonska K., Suski T.,

[55] Зубков, В. И. Взаимодействие квантовых ям InGaAs/GaAs с дельта-легированными слоями / В. И. Зубков, А. В. Кудрин, О. В. Кучерова, Ю. А. Данилов, Б. Н. Звонков // X Российской конференция по физике полупроводников, г. Нижний Новгород, 19-23 сентября 2011 г. – Нижний Новгород, 2011. – С. 57.

[59] Петровская А.Н. Вольт-фарадные измерения гетероструктур с квантовыми ямами InGaAs/GaAs в диапазоне температур от 10 до 320 К / Петровская А.Н., Зубков В.И. // ФТП. – 2009. – Т. 43. Вып. 10. - С. 1368-1373.

[60] Барановский М.В. Фотоэлектрический метод диагностики гетероструктур InGaN/GaN с множественными квантовыми ямами / Барановский М.В., Глинский Г.Ф., Миронова М.С. // ФТП – 2013. – Т. 47. №1. – С.60-64.

[64] Управление автоматизированной системой измерения спектров адmittанса полупроводников в зависимости от температуры, частоты и приложенного смещения (Автоматизация измерителя адmittанса): Свид-во о регистрации программы для ЭВМ. Рос. Федерация / Кучерова О.В., Зубков В.И., Петровская А.Н., Яковлев И.Н.; заявитель и правообладатель СПбГЭТУ. – №2010615375; выд. 20.08.2010.

[68] Способ определения параметров полупроводниковых структур [Текст]: пат. Рос. Федерация: МПК G 01 R 31/26 / Зубков В.И., Кучерова О.В., Яковлев И.Н.; заявитель и патентообладатель СПбГЭТУ. № 2010125595/28; заявл. 22.06.2010; выд. 25.05.2011.

[72] URL: http://mntl.illinois.edu/equipment/docs/agilent34401auserguide.pdf

